228 research outputs found
Random projections and the optimization of an algorithm for phase retrieval
Iterative phase retrieval algorithms typically employ projections onto
constraint subspaces to recover the unknown phases in the Fourier transform of
an image, or, in the case of x-ray crystallography, the electron density of a
molecule. For a general class of algorithms, where the basic iteration is
specified by the difference map, solutions are associated with fixed points of
the map, the attractive character of which determines the effectiveness of the
algorithm. The behavior of the difference map near fixed points is controlled
by the relative orientation of the tangent spaces of the two constraint
subspaces employed by the map. Since the dimensionalities involved are always
large in practical applications, it is appropriate to use random matrix theory
ideas to analyze the average-case convergence at fixed points. Optimal values
of the gamma parameters of the difference map are found which differ somewhat
from the values previously obtained on the assumption of orthogonal tangent
spaces.Comment: 15 page
Imaging atom-clusters by hard x-ray free electron lasers
The ingenious idea of single molecule imaging by hard x-ray Free Electron
Laser (X-FEL) pulses was recently proposed by Neutze et al.
[Nature,406,752(2000)]. However, in their numerical modelling of the Coulomb
explosion several interactions were neglected and no reconstruction of the
atomic structure was given. In this work we carried out improved molecular
dynamics calculations including all quantum processes which affect the
explosion. Based on this time evolution we generated composite elastic
scattering patterns, and by using Fienup's algorithm successfully reconstructed
the original atomic structure. The critical evaluation of these results gives
guidelines and sets important conditions for future experiments aiming single
molecule structure solution.Comment: 8 pages, 4 figures, submitted to Europhysics Letter
Solution to the twin image problem in holography
While the invention of holography by Dennis Gabor truly constitutes an
ingenious concept, it has ever since been troubled by the so called twin image
problem limiting the information that can be obtained from a holographic
record. Due to symmetry reasons there are always two images appearing in the
reconstruction process. Thus, the reconstructed object is obscured by its
unwanted out of focus twin image. Especially for emission electron as well as
for x- and gamma-ray holography, where the source-object distances are small,
the reconstructed images of atoms are very close to their twin images from
which they can hardly be distinguished. In some particular instances only,
experimental efforts could remove the twin images. More recently, numerical
methods to diminish the effect of the twin image have been proposed but are
limited to purely absorbing objects failing to account for phase shifts caused
by the object. Here we show a universal method to reconstruct a hologram
completely free of twin images disturbance while no assumptions about the
object need to be imposed. Both, amplitude and true phase distributions are
retrieved without distortion
Phaseless VLBI mapping of compact extragalactic radio sources
The problem of phaseless aperture synthesis is of current interest in
phase-unstable VLBI with a small number of elements when either the use of
closure phases is not possible (a two-element interferometer) or their quality
and number are not enough for acceptable image reconstruction by standard
adaptive calibration methods. Therefore, we discuss the problem of unique image
reconstruction only from the spectrum magnitude of a source. We suggest an
efficient method for phaseless VLBI mapping of compact extragalactic radio
sources. This method is based on the reconstruction of the spectrum magnitude
for a source on the entire UV plane from the measured visibility magnitude on a
limited set of points and the reconstruction of the sought-for image of the
source by Fienup's method from the spectrum magnitude reconstructed at the
first stage. We present the results of our mapping of the extragalactic radio
source 2200 +420 using astrometric and geodetic observations on a global VLBI
array. Particular attention is given to studying the capabilities of a
two-element interferometer in connection with the putting into operation of a
Russian-made radio interferometer based on Quasar RT-32 radio telescopes.Comment: 21 pages, 6 figure
Reconstruction of the phase of matter-wave fields using a momentum resolved cross-correlation technique
We investigate the potential of the so-called XFROG cross-correlation
technique originally developed for ultrashort laser pulses for the recovery of
the amplitude and phase of the condensate wave function of a Bose-Einstein
condensate. Key features of the XFROG method are its high resolution,
versatility and stability against noise and some sources of systematic errors.
After showing how an analogue of XFROG can be realized for Bose-Einstein
condensates, we illustrate its effectiveness in determining the amplitude and
phase of the wave function of a vortex state. The impact of a reduction of the
number of measurements and of typical sources of noise on the field
reconstruction are also analyzed.Comment: 7 pages; 9 figures; article with higher resolution figures available
from author
Nunalleq, Stories from the Village of Our Ancestors:Co-designing a multivocal educational resource based on an archaeological excavation
This work was funded by the UK-based Arts and Humanities Research Council through grants (AH/K006029/1) and (AH/R014523/1), a University of Aberdeen IKEC Award with additional support for travel and subsistence from the University of Dundee, DJCAD Research Committee RS2 project funding. Thank you to the many people who contributed their support, knowledge, feedback, voices and faces throughout the project, this list includes members of the local community, colleagues, specialists, students, and volunteers. If we have missed out any names we apologize but know that your help was appreciated. Jimmy Anaver, John Anderson, Alice Bailey, Kieran Baxter, Pauline Beebe, Ellinor Berggren, Dawn Biddison, Joshua Branstetter, Brendan Body, Lise Bos, Michael Broderick, Sarah Brown, Crystal Carter, Joseph Carter, Lucy Carter, Sally Carter, Ben Charles, Mary Church, Willard Church, Daniele Clementi, Annie Cleveland, Emily Cleveland, Joshua Cleveland, Aron Crowell, Neil Curtis, Angie Demma, Annie Don, Julia Farley, Veronique Forbes, Patti Fredericks, Tricia Gillam, Sean Gleason, Sven Haakanson, Cheryl Heitman, Grace Hill, Diana Hunter, Joel Isaak, Warren Jones, Stephan Jones, Ana Jorge, Solveig Junglas, Melia Knecht, Rick Knecht, Erika Larsen, Paul Ledger, Jonathan Lim Soon, Amber Lincoln, Steve Luke, Francis Lukezic, Eva Malvich, Pauline Matthews, Roy Mark, Edouard Masson-MacLean, Julie Masson-MacLean, Mhairi Maxwell, Chuna Mcintyre, Drew Michael, Amanda Mina, Anna Mossolova, Carl Nicolai Jr, Chris Niskanen, Molly Odell, Tom Paxton, Lauren Phillips, Lucy Qin, Charlie Roberts, Chris Rowe, Rufus Rowe,Chris Rowland, John Rundall, Melissa Shaginoff, Monica Shah, Anna Sloan, Darryl Small Jr, John Smith, Mike Smith, Joey Sparaga, Hannah Strehlau, Dora Strunk, Larissa Strunk, Lonny Strunk, Larry Strunk, Robbie Strunk, Sandra Toloczko, Richard Vanderhoek, the Qanirtuuq Incorporated Board, the Quinhagak Dance Group and the staff at Kuinerrarmiut Elitnaurviat. We also extend our thanks to three anonymous reviewers for their valuable comments on our paper.Peer reviewedPublisher PD
Inversion of the Diffraction Pattern from an Inhomogeneously Strained Crystal using an Iterative Algorithm
The displacement field in highly non uniformly strained crystals is obtained
by addition of constraints to an iterative phase retrieval algorithm. These
constraints include direct space density uniformity and also constraints to the
sign and derivatives of the different components of the displacement field.
This algorithm is applied to an experimental reciprocal space map measured
using high resolution X-ray diffraction from an array of silicon lines and the
obtained component of the displacement field is in very good agreement with the
one calculated using a finite element model.Comment: 5 pages, 4 figure
X-ray image reconstruction from a diffraction pattern alone
A solution to the inversion problem of scattering would offer aberration-free
diffraction-limited 3D images without the resolution and depth-of-field
limitations of lens-based tomographic systems. Powerful algorithms are
increasingly being used to act as lenses to form such images. Current image
reconstruction methods, however, require the knowledge of the shape of the
object and the low spatial frequencies unavoidably lost in experiments.
Diffractive imaging has thus previously been used to increase the resolution of
images obtained by other means. We demonstrate experimentally here a new
inversion method, which reconstructs the image of the object without the need
for any such prior knowledge.Comment: 5 pages, 3 figures, improved figures and captions, changed titl
Thermodynamic Properties of Generalized Exclusion Statistics
We analytically calculate some thermodynamic quantities of an ideal -on
gas obeying generalized exclusion statistics. We show that the specific heat of
a -on gas () vanishes linearly in any dimension as when
the particle number is conserved and exhibits an interesting dual symmetry that
relates the particle-statistics at to the hole-statistics at at low
temperatures. We derive the complete solution for the cluster coefficients
as a function of Haldane's statistical interaction in
dimensions. We also find that the cluster coefficients and the virial
coefficients are exactly mirror symmetric (=odd) or antisymmetric
(=even) about . In two dimensions, we completely determine the closed
forms about the cluster and the virial coefficients of the generalized
exclusion statistics, which exactly agree with the virial coefficients of an
anyon gas of linear energies. We show that the -on gas with zero chemical
potential shows thermodynamic properties similar to the photon statistics. We
discuss some physical implications of our results.Comment: 24 pages, Revtex, Corrected typo
A Solution to the Problem of Phaseless Mapping for a High-Orbit Space-Ground Radio Interferometer
We consider the problem of mapping with ultra-high angular resolution using a
space-ground radio interferometer with a space antenna in a high orbit,whose
apogee height exceeds the radius of the Earth by a factor of ten. In this case,
a multielement interferometer essentially degenerates into a two-element
interferometer. The degeneracy of the close-phase relations prevents the use of
standard methods for hybrid mapping and self-calibration for the correct
reconstruction of images. We propose a new phaseless mapping method based on
methods for the reconstruction of images in the complete absence of phase
information, using only the amplitudes of the spatial-coherence function of the
source. In connection with this problem, we propose a new method for the
reliable solution of the phase problem, based on optimizing
information-carrying nonlinear functionals, in particular, the Shannon entropy.
Results of simulations of mapping radio sources with various structures with
ultra-high angular resolution in the framework of the RADIOASTRON mission are
presented.Comment: 15 pages, 7 figure
- âŠ