2,430 research outputs found

    The Development of GRAPE, a Gamma Ray Polarimeter Experiment

    Get PDF
    The measurement of hard X‐ray polarization in γ‐ray bursts (GRBs) would add yet another piece of information in our effort to resolve the true nature of these enigmatic objects. Here we report on the development of a dedicated polarimeter design with a relatively large FoV that is capable of studying hard X‐ray polarization (50–300 keV) from GRBs. This compact design, based on the use of a large area position‐sensitive PMT (PSPMT), is referred to as GRAPE (Gamma‐RAy Polarimeter Experiment). The feature of GRAPE that is especially attractive for studies of GRBs is the significant off‐axis polarization response (at angles greater than 60°). For an array of GRAPE modules, current sensitivity estimates give minimum detectable polarization (MDP) levels of a few percent for the brightest GRBs

    Hard x-ray polarimeter for gamma-ray bursts and solar flares

    Get PDF
    We report on the development of a dedicated polarimeter design that is capable of studying the linear polarization of hard X-rays (50-300 keV) from gamma-ray bursts and solar flares. This compact design, based on the use of a large area position-sensitive PMT (PSPMT), is referred to as GRAPE (Gamma-RAy Polarimeter Experiment). The PSPMT is used to determine the Compton interaction location within an array of small plastic scintillator elements. Some of the photons that scatter within the plastic scintillator array are subsequently absorbed by a small centrally-located array of CsI(Tl) crystals that is read out by an independent multi-anode PMT. One feature of GRAPE that is especially attractive for studies of gamma-ray bursts is the significant off-axis response (at angles \u3e 60 degrees). The modular nature of this design lends itself toward its accomodation on a balloon or spacecraft platform. For an array of GRAPE modules, sensitivity levels below a few percent can be achieved for both gamma-ray bursts and solar flares. Here we report on the latest results from the testing of a laboratory science model

    Dedicated polarimeter design for hard x-ray and soft gamma-ray astronomy

    Get PDF
    We have developed a modular design for a hard X-ray and soft gamma-ray polrimeter that we call GRAPE (Gamma RAy Polarimeter Experiment). Optimized for the energy range of 50-300 keV, the GRAPE design is a Compton polarimeter based on the use of an array of plastic scintillator scattering elements in conjunction with a centrally positioned high-Z calorimeter detector. Here we shall review the results from a laboratory model of the baseline GRAPE design. The baseline design uses a 5-inch diameter position sensitive PMT (PSPMT) for readout of the plastic scintillator array and a small array of CsI detectors for measurement of the scattered photon. An improved design, based on the use of large area multi-anode PMTs (MAPMTs), is also discussed along with plans for laboratory testing of a prototype. An array of GRAPE modules could be used as the basis for a dedicated science mission, either on a long duration balloon or on an orbital mission. With a large effective FoV, a non-imaging GRAPE mission would be ideal for studying polarization in transient sources (gamma ray bursts and solar flares). It may also prove useful for studying periodically varying sources, such as pulsars. An imaging system would improve the sensitivity of the polarization measurements for transient and periodic sources and may also permit the measurement of polarization in steady-state sources

    Developing a Compton Polarimeter to Measure Polarization of Hard X-Rays in the 50-300 keV Energy Range

    Get PDF
    This paper discusses the latest progress in the development of GRAPE (Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead, to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high-Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high-Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat-panel multi-anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field-of-view (>pi steradian), at the same time offering the ability to be close-packed with multiple modules in order to reduce deadspace. We plan to present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources.Comment: 10 pages; conference paper presented at the SPIE conference "UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV." To be published in SPIE Conference Proceedings, vol. 589

    Development of a Hard X-Ray Polarimeter for Astrophysics

    Get PDF
    We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for γ-ray burst studie

    Development of a hard X-ray polarimeter for astrophysics

    Get PDF
    We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for γ-ray burst studies

    Radiation Damage and Activation from Proton Irradiation of Advanced Scintillators

    Get PDF
    We present results from a proton accelerator beam test to measure radiation damage and activation in advanced scintillator materials. Samples of LaBr3:Ce and LaCl3:Ce were exposed to protons from 40-250 MeV at the Proton Irradiation Facility of the Paul Scherrer Institute in Switzerland. Twelve energy bands were used to simulate the spectrum of the South Atlantic Anomaly (SAA), with different samples exposed to the equivalent of 4 months, 1 year, and 5 years of SAA passage. No significant decrease in light output was found due to radiation damage, indicating that these new scintillator materials are radiation tolerant. High-resolution spectra of the samples were obtained before and after irradiation with a Germanium spectrometer to study activation. We present a detailed analysis of these spectra and a discussion of the suitability of these scintillator materials for detectors in future space missions

    A hard X-ray solar flare polarimeter design based on scintillating fibers

    Get PDF
    We have developed a design for a Compton scatter polarimeter to measure the polarization of hard X-rays (50–300 keV) from solar flares. The modular design is based on an annular array of scintillating fibers coupled to a 5-inch position-sensitive PMT. Incident photons scatter from the fiber array into a small array of NaI detectors located at the center of the annulus. The location of the interactions in both the fiber array and in the NaI array can be used to measure the linear polarization of the incident flux. This compact design may be well-suited to a variety of astrophysical applications. An extensive series of Monte Carlo simulations has been performed to characterize this design
    corecore