305 research outputs found

    Compact strain-sensitive flexible photonic crystals for sensors

    No full text
    A promising fabrication route to produce absorbing flexible photonic crystals is presented, which exploits self-assembly during the shear processing of multi-shelled polymer spheres. When absorbing material is incorporated in the interstitial space surrounding high-refractive-index spheres, a dramatic enhancement in the transmission edge on the short-wavelength side of the band gap is observed. This effect originates from the shifting optical field spatial distribution as the incident wavelength is tuned around the band gap, and results in a contrast up to 100 times better than similar but nonabsorbing photonic crystals. An order-of-magnitude improvement in strain sensitivity is shown, suggesting the use of these thin films in photonic sensors

    ROS-mediated TNF-α and MIP-2 gene expression in alveolar macrophages exposed to pine dust

    Get PDF
    BACKGROUND: Respiratory symptoms, impaired lung function, and asthma have been reported in workers exposed to wood dust in a number of epidemiological studies. The underlying pathomechanisms, however, are not well understood. Here, we studied the effects of dust from pine (PD) and heat-treated pine (HPD) on the release of reactive oxygen species (ROS) and inflammatory mediators in rat alveolar macrophages. METHODS: Tumour necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) protein release, TNF-α and MIP-2 mRNA expression, and generation of ROS were studied as end points after treatment of rat alveolar macrophages with PD or HPD. In a separate series of experiments, the antioxidants glutathione and N-acetyl-L-cysteine were included in combination with wood dust. To determine the endogenous oxidative and antioxidant capacity of wood dusts, electron spin resonance (ESR) spectroscopy was used. RESULTS: After 4 h incubation, both PD and HPD elicited a significantly (p < 0.05) increased mRNA expression of TNF-α and MIP-2 as well as a concentration-dependent release of TNF-α and MIP-2 protein. Interestingly, PD induced a significantly higher TNF-α and MIP-2 production than HPD. Moreover, a significantly increased ROS production was observed in alveolar macrophages exposed to both PD and HPD. In the presence of the antioxidants glutathione and N-acetyl-L-cysteine, the PD- and HPD-induced release of ROS, TNF-α, and MIP-2 was significantly reduced. Finally, electron spin resonance analyses demonstrated a higher endogenous antioxidant capacity of HPD compared to PD. Endotoxin was not present in either dust sample. CONCLUSION: These results indicate that pine dust is able to induce expression of TNF-α and MIP-2 in rat alveolar macrophages by a mechanism that is, at least in part, mediated by ROS

    The influence of accretion geometry on the spectral evolution during thermonuclear (type-I) X-ray bursts

    Get PDF
    Neutron star (NS) masses and radii can be estimated from observations of photospheric radius-expansion X-ray bursts, provided the chemical composition of the photosphere, the spectral colour-correction factors in the observed luminosity range, and the emission area during the bursts are known. By analysing 246 X-ray bursts observed by the Rossi X-ray Timing Explorer from 11 low-mass X-ray binaries, we find a dependence between the persistent spectral properties and the time evolution of the black body normalisation during the bursts. All NS atmosphere models predict that the colour-correction factor decreases in the early cooling phase when the luminosity first drops below the limiting Eddington value, leading to a characteristic pattern of variability in the measured blackbody normalisation. However, the model predictions agree with the observations for most bursts occurring in hard, low-luminosity, &#39;island&#39; spectral states, but rarely during soft, high-luminosity, &#39;banana&#39; states. The observed behaviour may be attributed to the accretion flow, which influences cooling of the NS preferentially during the soft state bursts. This result implies that only the bursts occurring in the hard, low-luminosity spectral states can be reliably used for NS mass and radius determination.</p

    The influence of accretion geometry on the spectral evolution during thermonuclear (type I) X-ray bursts

    Get PDF
    © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. Neutron star (NS)masses and radii can be estimated from observations of photospheric radiusexpansion X-ray bursts, provided the chemical composition of the photosphere, the spectral colour-correction factors in the observed luminosity range, and the emission area during the bursts are known. By analysing 246 X-ray bursts observed by the Rossi X-ray Timing Explorer from 11 low-mass X-ray binaries, we find a dependence between the persistent spectral properties and the time evolution of the blackbody normalization during the bursts. All NS atmosphere models predict that the colour-correction factor decreases in the early cooling phase when the luminosity first drops below the limiting Eddington value, leading to a characteristic pattern of variability in the measured blackbody normalization. However, the model predictions agree with the observations for most bursts occurring in hard, lowluminosity, island spectral states, but rarely during soft, high-luminosity, banana states. The observed behaviour may be attributed to the accretion flow, which influences cooling of the NS preferentially during the soft state bursts. This result implies that only the bursts occurring in the hard, low-luminosity spectral states can be reliably used for NS mass and radius determination

    LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures

    Get PDF
    This paper describes the rapidly evolving and unusual supernova LSQ13ddu, discovered by the La Silla-QUEST survey. LSQ13ddu displayed a rapid rise of just 4.8 ± 0.9 d to reach a peak brightness of −19.70 ± 0.02 mag in the LSQgr band. Early spectra of LSQ13ddu showed the presence of weak and narrow HeI features arising from interaction with circumstellar material (CSM). These interaction signatures weakened quickly, with broad features consistent with those seen in stripped-envelope SNe becoming dominant around two weeks after maximum. The narrow HeI velocities are consistent with the wind velocities of luminous blue variables but its spectra lack the typically seen hydrogen features. The fast and bright early light curve is inconsistent with radioactive ⁔⁶Ni powering but can be explained through a combination of CSM interaction and an underlying ⁔⁶Ni decay component that dominates the later time behaviour of LSQ13ddu. Based on the strength of the underlying broad features, LSQ13ddu appears deficient in He compared to standard SNe Ib

    SN 2023emq: a flash-ionised Ibn supernova with possible CIII emissio

    Full text link
    SN 2023emq is a fast-evolving transient initially classified as a rare Type Icn supernova (SN), interacting with a H- and He-free circumstellar medium (CSM) around maximum light. Subsequent spectroscopy revealed the unambiguous emergence of narrow He lines, confidently placing SN 2023emq in the more common Type Ibn class. Photometrically SN 2023emq has several uncommon properties regardless of its class, including its extreme initial decay (faster than > 90% of Ibn/Icn SNe) and sharp transition in the decline rate from 0.20 mag/d to 0.07 mag/d at +20 d. The bolometric light curve can be modelled as CSM interaction with 0.32M_Sun of ejecta and 0.12M_Sun of CSM, with 0.006M_Sun of nickel, as expected of fast interacting SNe. Furthermore, broad-band polarimetry at +8.7 days (P = 0.55 +/- 0.30%) is consistent with spherical symmetry. A discovery of a transitional Icn/Ibn SN would be unprecedented and would give valuable insights into the nature of mass loss suffered by the progenitor just before death, but we favour an interpretation that SN 2023emq is a type Ibn SN that exhibited flash-ionised features in the earliest spectrum, as the features are not an exact match with other SNe Icn to date. However, the feature at 5700{\AA}, in the region of C III and N II emission, is significantly stronger in SN 2023emq than in the few other flash-ionised Type Ibn SNe, and if it is related to C III, it possibly implies a continuum of properties between the two classes.Comment: Accepted to ApJL on 22/11/202

    SN 2020zbf: A fast-rising hydrogen-poor superluminous supernova with strong carbon lines

    Full text link
    SN 2020zbf is a hydrogen-poor superluminous supernova at z=0.1947z = 0.1947 that shows conspicuous C II features at early times, in contrast to the majority of H-poor SLSNe. Its peak magnitude is MgM_{\rm g} = −21.2-21.2 mag and its rise time (â‰Č24\lesssim 24 days from first light) place SN 2020zbf among the fastest rising SLSNe-I. Spectra taken from ultraviolet (UV) to near-infrared wavelengths are used for the identification of spectral features. We pay particular attention to the C II lines as they present distinctive characteristics when compared to other events. We also analyze UV and optical photometric data, and model the light curves considering three different powering mechanisms: radioactive decay of Ni, magnetar spin-down and circumstellar material interaction (CSM). The spectra of SN 2020zbf match well with the model spectra of a C-rich low-mass magnetar model. This is consistent with our light curve modelling which supports a magnetar-powered explosion with a MejM_{\rm ej} = 1.5 M⊙M_\odot. However, we cannot discard the CSM-interaction model as it also may reproduce the observed features. The interaction with H-poor, carbon-oxygen CSM near peak could explain the presence of C II emission lines. A short plateau in the light curve, around 30 - 40 days after peak, in combination with the presence of an emission line at 6580 \r{A} can also be interpreted as late interaction with an extended H-rich CSM. Both the magnetar and CSM interaction models of SN 2020zbf indicate that the progenitor mass at the time of explosion is between 2 - 5 M⊙M_\odot. Modelling the spectral energy distribution of the host reveals a host mass of 108.7^{8.7} M⊙M_\odot, a star-formation rate of 0.24−0.12+0.41^{+0.41}_{-0.12} M⊙M_\odot yr−1^{-1} and a metallicity of ∌\sim 0.4 Z⊙Z_\odot.Comment: 26 pages, 22 figures, submitted to A&
    • 

    corecore