490 research outputs found
Local Sensitivity Analysis of Kinetic Models for Cellulose Pyrolysis
Abstract: The first and nth order kinetic models are usually used to describe cellulose pyrolysis. In this work, the local sensitivities of the conversion and derivative conversion with respect to the frequency factor, the logarithm of the frequency factor, the activation energy and the reaction order for the first and nth order kinetic models are calculated by using the finite difference method. The results show that the sensitivities of the first and nth order kinetic models with respect to the activation energy and the logarithm of the frequency factor are significant, while the frequency factor and the reaction order affect the nth order kinetic model slightly. Compared with the frequency factor, the natural logarithm of the frequency factor is a better choice in the parameter estimation of the first and nth order kinetic models. Graphical Abstract: [Figure not available: see fulltext.
Recommended from our members
Advanced materials for solid oxide fuel cells
Purpose of the research is to improve the properties of current state- of-the-art materials used for SOFCs. The project includes interconnect development, high-performance cathode, electrochemical testing, and accelerated testing. This document reports results of mechanical tests (bend strength, elastic modulus, fracture strength) of acceptor-substituted lanthanum chromite (interconnect material)
Clarifications on the "Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S."
In a recent paper, Leroux et al. compared three satellite soil moisture data sets (SMOS, AMSR-E, and ASCAT) and ECMWF forecast soil moisture data to in situ measurements over four watersheds located in the United States. Their conclusions stated that SMOS soil moisture retrievals represent "an improvement [in RMSE] by a factor of 2-3 compared with the other products" and that the ASCAT soil moisture data are "very noisy and unstable." In this clarification, the analysis of Leroux et al. is repeated using a newer version of the ASCAT data and additional metrics are provided. It is shown that the ASCAT retrievals are skillful, although they show some unexpected behavior during summer for two of the watersheds. It is also noted that the improvement of SMOS by a factor of 2-3 mentioned by Leroux et al. is driven by differences in bias and only applies relative to AMSR-E and the ECWMF data in the now obsolete version investigated by Leroux et al
Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2ÎČ, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana
Inositol phosphates (IPs) and their turnover products have been implicated to play important roles in stress signaling in eukaryotic cells. In higher plants genes encoding inositol polyphosphate kinases have been identified previously, but their physiological functions have not been fully resolved. Here we expressed Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2ÎČ) in two heterologous systems, i.e. the yeast Saccharomycescerevisiae and in tobacco (Nicotiana tabacum), and tested the effect on abiotic stress tolerance. Expression of AtIpk2ÎČ rescued the salt-, osmotic- and temperature-sensitive growth defects of a yeast mutant strain (arg82Î) that lacks inositol polyphosphate multikinase activity encoded by the ARG82/IPK2 gene. Transgenic tobacco plants constitutively expressing AtIpk2ÎČ under the control of the Cauliflower Mosaic Virus 35S promoter were generated and found to exhibit improved tolerance to diverse abiotic stresses when compared to wild type plants. Expression patterns of various stress responsive genes were enhanced, and the activities of anti-oxidative enzymes were elevated in transgenic plants, suggesting a possible involvement of AtIpk2ÎČ in plant stress responses
The state of the Martian climate
60°N was +2.0°C, relative to the 1981â2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Ground, Proximal, and Satellite Remote Sensing of Soil Moisture
Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wideâranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the stateâofâtheâart of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security
- âŠ