1,976 research outputs found

    Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    Full text link
    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.Comment: 4 pages, 5 figure

    Photoactivation of trans diamine platinum complexes in aqueous solution and effect on reactivity towards nucleotides

    Get PDF
    We show that UVA irradiation (365 nm) of the Pt-IV complex trans,trans,trans-[(PtCl2)-Cl-IV(OH)(2)(dimethylamine) (isopropylamine)] (1), induces reduction to Pt-II photoproducts. For the mixed amine Pt-II complex, trans[(PtCl2)-Cl-II(isopropylamine)(methylamine)] (2), irradiation at 365 nm increases the rate and extent of hydrolysis, triggering the formation of diaqua species. Additionally, irradiation increases the extent of reaction of complex 2 with guanosine-5'-monophosphate and affords mainly the bis-adduct, while reactions with adenosine-5'-monophosphate and cytidine-5'-monophosphate give rise only to mono-nucleotide adducts. Density Functional Theory calculations have been used to obtain insights into the electronic structure of complexes 1 and 2, and their photophysical and photochemical properties. UVA-irradiation can contribute to enhanced cytotoxic effects of diamine platinum drugs with trans geometry

    Kullback-Leibler and Renormalized Entropy: Applications to EEGs of Epilepsy Patients

    Full text link
    Recently, renormalized entropy was proposed as a novel measure of relative entropy (P. Saparin et al., Chaos, Solitons & Fractals 4, 1907 (1994)) and applied to several physiological time sequences, including EEGs of patients with epilepsy. We show here that this measure is just a modified Kullback-Leibler (K-L) relative entropy, and it gives similar numerical results to the standard K-L entropy. The latter better distinguishes frequency contents of e.g. seizure and background EEGs than renormalized entropy. We thus propose that renormalized entropy might not be as useful as claimed by its proponents. In passing we also make some critical remarks about the implementation of these methods.Comment: 15 pages, 4 Postscript figures. Submitted to Phys. Rev. E, 199

    Overview of the JET results in support to ITER

    Get PDF
    The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at βN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed.European Commission (EUROfusion 633053

    Analytic results for NN particles with 1/r21/r^2 interaction in two dimensions and an external magnetic field

    Full text link
    The 2N2N-dimensional quantum problem of NN particles (e.g. electrons) with interaction β/r2\beta/r^2 in a two-dimensional parabolic potential ω0\omega_0 (e.g. quantum dot) and magnetic field BB, reduces exactly to solving a (2N4)(2N-4)-dimensional problem which is independent of BB and ω0\omega_0. An exact, infinite set of relative mode excitations are obtained for any NN. The N=3N=3 problem reduces to that of a ficticious particle in a two-dimensional, non-linear potential of strength β\beta, subject to a ficticious magnetic field BficJB_{\rm fic}\propto J, the relative angular momentum.Comment: To appear in Physical Review Letters (in press). RevTeX file. Two figures available from [email protected] or [email protected]

    The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking

    Full text link
    Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra- or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A. salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A. salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish aquaculture

    Microscopic analytical theory of a correlated, two-dimensional N-electron gas in a magnetic field

    Full text link
    We present a microscopic, analytical theory describing a confined N-electron gas in two dimensions subject to an external magnetic field. The number of electrons N and strength of the electron-electron interaction can be arbitrarily large, and all Landau levels are included implicitly. A possible connection with the Integer and Fractional Quantum Hall Effects is proposed.Comment: The revised version contains minor changes to text. To be published in J. Phys: Condens. Mat

    Entangled Electronic States in Multiple Quantum-Dot Systems

    Full text link
    We present an analytically solvable model of PP colinear, two-dimensional quantum dots, each containing two electrons. Inter-dot coupling via the electron-electron interaction gives rise to sets of entangled ground states. These ground states have crystal-like inter-plane correlations and arise discontinously with increasing magnetic field. Their ranges and stabilities are found to depend on dot size ratios, and to increase with PP.Comment: To appear in Physical Review B (in press). RevTeX file. Figures available from [email protected]
    corecore