98 research outputs found
A widespread outbreak of Yersinia pseudotuberculosis O:3 infection from iceberg lettuce
Background. The vehicles and sources of Yersinia pseudotuberculosis infection are unknown. In Finland, clinical microbiology laboratories routinely report Y. pseudotuberculosis isolations and submit isolates for serotype analysis. In October 1998, the number of serotype O:3 infections increased markedly.
Methods. Case patients with culture-confirmed Y. pseudotuberculosis O:3 infection were identified by use of laboratory-based surveillance. We conducted a population-based case-control study. Healthy community control subjects were matched by age, sex, and postal code. Isolates were subtyped by pulsed-field gel electrophoresis (PFGE).
Results. Nationwide, 47 case patients were identified (age range, 277 years; median, 19 years). One patient with bacteremia died; 5 underwent appendectomies. We enrolled 38 case patients and 76 control subjects in the case-control study. Seventy-one percent of case patients and 42% of control subjects reported having eaten iceberg lettuce (matched odds ratio, 3.8; 95% confidence interval, 1.39.4); a dose-response relationship was found for increasing frequency of consumption. Of the 27 isolates obtained from case patients and tested in the analysis, all had indistinguishable PFGE patterns. Four lunch cafeterias that had served iceberg lettuce were associated with clusters of case patients. The lettuce was traced back to originating farms.
Conclusions. Iceberg lettuce was implicated as the vehicle of a widespread foodborne Y. pseudotuberculosis outbreak. Ongoing laboratory-based surveillance and serotype analysis were essential in the rapid detection of infection. Cases of yersiniosis, which appear to be sporadic, may be part of unrecognized outbreaks caused by contaminated fresh produce
Upper airways colonisation of Streptococcus pneumoniae in adults aged 60 years and older: A systematic review of prevalence and individual participant data meta-analysis of risk factors
Background: Colonisation with Streptococcus pneumoniae can lead to invasive pneumococcal disease and pneumonia. Pneumococcal acquisition and prevalence of colonisation are high in children. In older adults, a population susceptible to pneumococcal disease, colonisation prevalence is reported to be lower, but studies are heterogeneous. Methods: This is a systematic review and meta-analysis of prevalence of, and risk factors for, pneumococcal colonisation in adults ≥ 60 years of age (PROSPERO #42016036891). We identified peer-reviewed studies reporting the prevalence of S. pneumoniae colonisation using MEDLINE and EMBASE (until April 2016), excluding studies of acute disease. Participant-level data on risk factors were sought from each study. Findings: Of 2202 studies screened, 29 were analysable: 18 provided participant-level data (representing 6290 participants). Prevalence of detected pneumococcal colonisation was 0–39% by conventional culture methods and 3–23% by molecular methods. In a multivariate analysis, colonisation was higher in persons from nursing facilities compared with the community (odds ratio (OR) 2•30, 95% CI 1•26–4•21 and OR 7•72, 95% CI 1•15–51•85, respectively), in those who were currently smoking (OR 1•69, 95% CI 1•12–2•53) or those who had regular contact with children (OR 1•93, 95%CI 1•27–2•93). Persons living in urban areas had significantly lower carriage prevalence (OR 0•43, 95%CI 0•27–0•70). Interpretation: Overall prevalence of pneumococcal colonisation in older adults was higher than expected but varied by risk factors. Future studies should further explore risk factors for colonisation, to highlight targets for focussed intervention such as pneumococcal vaccination of high-risk groups. Funding: No funding was required
Pneumococcal Serotypes and Mortality following Invasive Pneumococcal Disease: A Population-Based Cohort Study
Analyzing population-based data collected over 30 years in more than 18,000 patients with invasive pneumococcal infection, Zitta Harboe and colleagues find specific pneumococcal serotypes to be associated with increased mortality
Are the pneumococcal polysaccharide vaccines effective? Meta-analysis of the prospective trials
The objective was to review the evidence of effectiveness of the polyvalent polysaccharide pneumococcal vaccine from prospective properly randomised controlled trials comparing pneumococcal vaccines with placebo in subjects who are immunocompetent and those likely to have an impaired immune system. Databases searched included the Cochrane Library, (issue 2, 2000), MEDLINE (1966-August 2000), PubMed (to August 2000) and EMBASE ( to August 2000). Reference lists of reports and reviews were also searched. To be included in the analysis, a study had to have been a prospective randomised comparison of a polysaccharide pneumococcal vaccine (any valency) and to have a placebo or no treatment comparison group. Papers had to report important clinical outcomes, such as rates of pneumonia, pneumococcal pneumonia, lower respiratory tract infections, pneumonia deaths or bacteraemia. Serological outcomes were not sought. Thirteen randomised comparisons with over 45,000 subjects were identified in an extensive literature review. Eight studies had a quality score of 3 or more on a scale of 1 to 5. In three comparisons with 21,152 immunocompetent subjects (South African gold miners, New Guinea highlanders) pneumococcal vaccination was effective in reducing the incidence of all-cause pneumonia (relative risk 0.56, 95% confidence interval 0.47 to 0.66), pneumococcal pneumonia (0.16; 0.11 to 0.23), pneumonia deaths (0.70; 0.50 to 0.96) and bacteraemia (0.18; 0.09 to 0.34). In ten comparisons in over 24,000 people who were elderly or likely to have impaired immune systems, pneumococcal vaccination was without effect for any outcome. Present guidelines recommend pneumococcal vaccination for "high-risk" groups. There is no evidence from randomised trials that this is of any benefit
Outbreak of Pneumonia in the Setting of Fatal Pneumococcal Meningitis among US Army Trainees: Potential Role of Chlamydia pneumoniae Infection
<p>Abstract</p> <p>Background</p> <p>Compared to the civilian population, military trainees are often at increased risk for respiratory infections. We investigated an outbreak of radiologically-confirmed pneumonia that was recognized after 2 fatal cases of serotype 7F pneumococcal meningitis were reported in a 303-person military trainee company (Alpha Company).</p> <p>Methods</p> <p>We reviewed surveillance data on pneumonia and febrile respiratory illness at the training facility; conducted chart reviews for cases of radiologically-confirmed pneumonia; and administered surveys and collected nasopharyngeal swabs from trainees in the outbreak battalion (Alpha and Hotel Companies), associated training staff, and trainees newly joining the battalion.</p> <p>Results</p> <p>Among Alpha and Hotel Company trainees, the average weekly attack rates of radiologically-confirmed pneumonia were 1.4% and 1.2% (most other companies at FLW: 0-0.4%). The pneumococcal carriage rate among all Alpha Company trainees was 15% with a predominance of serotypes 7F and 3. <it>Chlamydia pneumoniae </it>was identified from 31% of specimens collected from Alpha Company trainees with respiratory symptoms.</p> <p>Conclusion</p> <p>Although the etiology of the outbreak remains unclear, the identification of both <it>S. pneumoniae </it>and <it>C. pneumoniae </it>among trainees suggests that both pathogens may have contributed either independently or as cofactors to the observed increased incidence of pneumonia in the outbreak battalion and should be considered as possible etiologies in outbreaks of pneumonia in the military population.</p
Population-Based Surveillance for Invasive Pneumococcal Disease in Homeless Adults in Toronto
BACKGROUND: Identification of high-risk populations for serious infection due to S. pneumoniae will permit appropriately targeted prevention programs. METHODS: We conducted prospective, population-based surveillance for invasive pneumococcal disease and laboratory confirmed pneumococcal pneumonia in homeless adults in Toronto, a Canadian city with a total population of 2.5 M, from January 1, 2002 to December 31, 2006. RESULTS: We identified 69 cases of invasive pneumococcal disease and 27 cases of laboratory confirmed pneumococcal pneumonia in an estimated population of 5050 homeless adults. The incidence of invasive pneumococcal disease in homeless adults was 273 infections per 100,000 persons per year, compared to 9 per 100,000 persons per year in the general adult population. Homeless persons with invasive pneumococcal disease were younger than other adults (median age 46 years vs 67 years, P<.001), and more likely than other adults to be smokers (95% vs. 31%, P<.001), to abuse alcohol (62% vs 15%, P<.001), and to use intravenous drugs (42% vs 4%, P<.001). Relative to age matched controls, they were more likely to have underlying lung disease (12/69, 17% vs 17/272, 6%, P = .006), but not more likely to be HIV infected (17/69, 25% vs 58/282, 21%, P = .73). The proportion of patients with recurrent disease was five fold higher for homeless than other adults (7/58, 12% vs. 24/943, 2.5%, P<.001). In homeless adults, 28 (32%) of pneumococcal isolates were of serotypes included in the 7-valent conjugate vaccine, 42 (48%) of serotypes included in the 13-valent conjugate vaccine, and 72 (83%) of serotypes included in the 23-valent polysaccharide vaccine. Although no outbreaks of disease were identified in shelters, there was evidence of clustering of serotypes suggestive of transmission of pathogenic strains within the homeless population. CONCLUSIONS: Homeless persons are at high risk of serious pneumococcal infection. Vaccination, physical structure changes or other program to reduce transmission in shelters, harm reduction programs to reduce rates of smoking, alcohol abuse and infection with bloodborne pathogens, and improved treatment programs for HIV infection may all be effective in reducing the risk
Changes in Invasive Pneumococcal Disease Caused by Streptococcus pneumoniae Serotype 1 Following Introduction of PCV10 and PCV13: Findings from the PSERENADE Project.
Streptococcus pneumoniae serotype 1 (ST1) was an important cause of invasive pneumococcal disease (IPD) globally before the introduction of pneumococcal conjugate vaccines (PCVs) containing ST1 antigen. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project gathered ST1 IPD surveillance data from sites globally and aimed to estimate PCV10/13 impact on ST1 IPD incidence. We estimated ST1 IPD incidence rate ratios (IRRs) comparing the pre-PCV10/13 period to each post-PCV10/13 year by site using a Bayesian multi-level, mixed-effects Poisson regression and all-site IRRs using a linear mixed-effects regression (N = 45 sites). Following PCV10/13 introduction, the incidence rate (IR) of ST1 IPD declined among all ages. After six years of PCV10/13 use, the all-site IRR was 0.05 (95% credibility interval 0.04–0.06) for all ages, 0.05 (0.04–0.05) for <5 years of age, 0.08 (0.06–0.09) for 5–17 years, 0.06 (0.05–0.08) for 18–49 years, 0.06 (0.05–0.07) for 50–64 years, and 0.05 (0.04–0.06) for ≥65 years. PCV10/13 use in infant immunization programs was followed by a 95% reduction in ST1 IPD in all ages after approximately 6 years. Limited data availability from the highest ST1 disease burden countries using a 3+0 schedule constrains generalizability and data from these settings are needed
Serotype distribution of remaining pneumococcal meningitis in the mature PCV10/13 period: Findings from the PSERENADE Project
Pneumococcal conjugate vaccine (PCV) introduction has reduced pneumococcal meningitis incidence. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project described the serotype distribution of remaining pneumococcal meningitis in countries using PCV10/13 for least 5-7 years with primary series uptake above 70%. The distribution was estimated using a multinomial Dirichlet regression model, stratified by PCV product and age. In PCV10-using sites (N = 8; cases = 1141), PCV10 types caused 5% of cases <5 years of age and 15% among ≥5 years; the top serotypes were 19A, 6C, and 3, together causing 42% of cases <5 years and 37% ≥5 years. In PCV13-using sites (N = 32; cases = 4503), PCV13 types caused 14% in <5 and 26% in ≥5 years; 4% and 13%, respectively, were serotype 3. Among the top serotypes are five (15BC, 8, 12F, 10A, and 22F) included in higher-valency PCVs under evaluation. Other top serotypes (24F, 23B, and 23A) are not in any known investigational product. In countries with mature vaccination programs, the proportion of pneumococcal meningitis caused by vaccine-in-use serotypes is lower (≤26% across all ages) than pre-PCV (≥70% in children). Higher-valency PCVs under evaluation target over half of remaining pneumococcal meningitis cases, but questions remain regarding generalizability to the African meningitis belt where additional data are needed
Global landscape review of serotype-specific invasive pneumococcal disease surveillance among countries using PCV10/13: The pneumococcal serotype replacement and distribution estimation (PSERENADE) project
Serotype-specific surveillance for invasive pneumococcal disease (IPD) is essential for assessing the impact of 10- and 13-valent pneumococcal conjugate vaccines (PCV10/13). The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project aimed to evaluate the global evidence to estimate the impact of PCV10/13 by age, product, schedule, and syndrome. Here we systematically characterize and summarize the global landscape of routine serotype-specific IPD surveillance in PCV10/13-using countries and describe the subset that are included in PSERENADE. Of 138 countries using PCV10/13 as of 2018, we identified 109 with IPD surveillance systems, 76 of which met PSERENADE data collection eligibility criteria. PSERENADE received data from most (n = 63, 82.9%), yielding 240,639 post-PCV10/13 introduction IPD cases. Pediatric and adult surveillance was represented from all geographic regions but was limited from lower income and high-burden countries. In PSERENADE, 18 sites evaluated PCV10, 42 PCV13, and 17 both; 17 sites used a 3 + 0 schedule, 38 used 2 + 1, 13 used 3 + 1, and 9 used mixed schedules. With such a sizeable and generally representative dataset, PSERENADE will be able to conduct robust analyses to estimate PCV impact and inform policy at national and global levels regarding adult immunization, schedule, and product choice, including for higher valency PCVs on the horizon
Frequency-dependent selection in vaccine-associated pneumococcal population dynamics
Many bacterial species are composed of multiple lineages distinguished by extensive variation in gene content. These often cocirculate in the same habitat, but the evolutionary and ecological processes that shape these complex populations are poorly understood. Addressing these questions is particularly important for Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen, because the changes in population structure associated with the recent introduction of partial-coverage vaccines have substantially reduced pneumococcal disease. Here we show that pneumococcal lineages from multiple populations each have a distinct combination of intermediate-frequency genes. Functional analysis suggested that these loci may be subject to negative frequency-dependent selection (NFDS) through interactions with other bacteria, hosts or mobile elements. Correspondingly, these genes had similar frequencies in four populations with dissimilar lineage compositions. These frequencies were maintained following substantial alterations in lineage prevalences once vaccination programmes began. Fitting a multilocus NFDS model of post-vaccine population dynamics to three genomic datasets using Approximate Bayesian Computation generated reproducible estimates of the influence of NFDS on pneumococcal evolution, the strength of which varied between loci. Simulations replicated the stable frequency of lineages unperturbed by vaccination, patterns of serotype switching and clonal replacement. This framework highlights how bacterial ecology affects the impact of clinical interventions.Accessory loci are shown to have similar frequencies in diverse Streptococcus pneumoniae populations, suggesting negative frequency-dependent selection drives post-vaccination population restructuring
- …