202 research outputs found
A 31T split-pair pulsed magnet for single crystal x-ray diffraction at low temperature
We have developed a pulsed magnet system with panoramic access for
synchrotron x-ray diffraction in magnetic fields up to 31T and at low
temperature down to 1.5 K. The apparatus consists of a split-pair magnet, a
liquid nitrogen bath to cool the pulsed coil, and a helium cryostat allowing
sample temperatures from 1.5 up to 250 K. Using a 1.15MJ mobile generator,
magnetic field pulses of 60 ms length were generated in the magnet, with a rise
time of 16.5 ms and a repetition rate of 2 pulses/hour at 31 T. The setup was
validated for single crystal diffraction on the ESRF beamline ID06
Fractional-Period Excitations in Continuum Periodic Systems
We investigate the generation of fractional-period states in continuum
periodic systems. As an example, we consider a Bose-Einstein condensate
confined in an optical-lattice potential. We show that when the potential is
turned on non-adiabatically, the system explores a number of transient states
whose periodicity is a fraction of that of the lattice. We illustrate the
origin of fractional-period states analytically by treating them as resonant
states of a parametrically forced Duffing oscillator and discuss their
transient nature and potential observability.Comment: 10 pages, 6 figures (some with multiple parts); revised version:
minor clarifications of a couple points, to appear in Physical Review
High frequency magnetic oscillations of the organic metal -(ET)ZnBr(CHCl) in pulsed magnetic field of up to 81 T
De Haas-van Alphen oscillations of the organic metal
-(ET)ZnBr(CHCl) are studied in pulsed magnetic
fields up to 81 T. The long decay time of the pulse allows determining reliable
field-dependent amplitudes of Fourier components with frequencies up to several
kiloteslas. The Fourier spectrum is in agreement with the model of a linear
chain of coupled orbits. In this model, all the observed frequencies are linear
combinations of the frequency linked to the basic orbit and to the
magnetic-breakdown orbit .Comment: 6 pages, 4 figure
No effect of repeated post-resistance exercise cold or hot water immersion on in-season body composition and performance responses in academy rugby players : A randomised controlled cross-over design
Purpose
Following resistance exercise, uncertainty exists as to whether the regular application of cold water immersion attenuates lean muscle mass increases in athletes. The effects of repeated post-resistance exercise cold versus hot water immersion on body composition and neuromuscular jump performance responses in athletes were investigated.
Methods
Male, academy Super Rugby players (n = 18, 19.9 ± 1.5 y, 1.85 ± 0.06 m, 98.3 ± 10.7 kg) participated in a 12-week (4-week × 3-intervention, i.e., control [CON], cold [CWI] or hot [HWI] water immersion) resistance exercise programme, utilising a randomised cross-over pre–post-design. Body composition measures were collected using dual-energy X-ray absorptiometry prior to commencement and every fourth week thereafter. Neuromuscular squat (SJ) and counter-movement jump (CMJ) performance were measured weekly. Linear mixed-effects models were used to analyse main (treatment, time) and interaction effects.
Results
There were no changes in lean (p = 0.960) nor fat mass (p = 0.801) between interventions. CON (p = 0.004) and CWI (p = 0.003) increased (g = 0.08–0.19) SJ height, compared to HWI. There were no changes in CMJ height (p = 0.482) between interventions.
Conclusion
Repeated post-resistance exercise whole-body CWI or HWI does not attenuate (nor promote) increases in lean muscle mass in athletes. Post-resistance exercise CON or CWI results in trivial increases in SJ height, compared to HWI. During an in-season competition phase, our data support the continued use of post-resistance exercise whole-body CWI by athletes as a recovery strategy which does not attenuate body composition increases in lean muscle mass, while promoting trivial increases in neuromuscular concentric-only squat jump performance
No effect of repeated post-resistance exercise cold or hot water immersion on in-season body composition and performance responses in academy rugby players: A randomised controlled cross-over design
Purpose: Following resistance exercise, uncertainty exists as to whether the regular application of cold water immersion attenuates lean muscle mass increases in athletes. The effects of repeated post-resistance exercise cold versus hot water immersion on body composition and neuromuscular jump performance responses in athletes were investigated. Methods: Male, academy Super Rugby players (n = 18, 19.9 ± 1.5 y, 1.85 ± 0.06 m, 98.3 ± 10.7 kg) participated in a 12-week (4-week × 3-intervention, i.e., control [CON], cold [CWI] or hot [HWI] water immersion) resistance exercise programme, utilising a randomised cross-over pre–post-design. Body composition measures were collected using dual-energy X-ray absorptiometry prior to commencement and every fourth week thereafter. Neuromuscular squat (SJ) and counter-movement jump (CMJ) performance were measured weekly. Linear mixed-effects models were used to analyse main (treatment, time) and interaction effects. Results: There were no changes in lean (p = 0.960) nor fat mass (p = 0.801) between interventions. CON (p = 0.004) and CWI (p = 0.003) increased (g = 0.08–0.19) SJ height, compared to HWI. There were no changes in CMJ height (p = 0.482) between interventions. Conclusion: Repeated post-resistance exercise whole-body CWI or HWI does not attenuate (nor promote) increases in lean muscle mass in athletes. Post-resistance exercise CON or CWI results in trivial increases in SJ height, compared to HWI. During an in-season competition phase, our data support the continued use of post-resistance exercise whole-body CWI by athletes as a recovery strategy which does not attenuate body composition increases in lean muscle mass, while promoting trivial increases in neuromuscular concentric-only squat jump performance
Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging
Coherent diffraction imaging (CDI) on Bragg reflections is a promising
technique for the study of three-dimensional (3D) composition and strain fields
in nanostructures, which can be recovered directly from the coherent
diffraction data recorded on single objects. In this article we report results
obtained for single homogeneous and heterogeneous nanowires with a diameter
smaller than 100 nm, for which we used CDI to retrieve information about
deformation and faults existing in these wires. The article also discusses the
influence of stacking faults, which can create artefacts during the
reconstruction of the nanowire shape and deformation.Comment: 18 pages, 6 figures Submitted to New Journal of Physic
Loss and revival of phase coherence in a Bose-Einstein condensate moving through an optical lattice
We investigate the phase coherence of a trapped Bose-Einstein condensate that
undergoes a dynamical superfluid-insulator transition in the presence of a
one-dimensional optical lattice. We study the evolution of the condensate after
a sudden displacement of the harmonic trapping potential by solving the
Gross-Pitaevskii equation, and comparing the results with the prediction of two
effective 1D models. We show that, owing to the 3D nature of the system, the
breakdown of the superfluid current above a critical displacement is not
associated to a sharp transition, but there exists a range of displacements for
which the condensate can recover a certain degree of coherence. We also discuss
the implications on the interference pattern after the ballistic expansion as
measured in recent experiments at LENS.Comment: 7 pages, 9 figure
Superfluid Dynamics of a Bose-Einstein Condensate in a Periodic Potential
We investigate the superfluid properties of a Bose-Einstein condensate (BEC)
trapped in a one dimensional periodic potential. We study, both analytically
(in the tight binding limit) and numerically, the Bloch chemical potential, the
Bloch energy and the Bogoliubov dispersion relation, and we introduce {\it two}
different, density dependent, effective masses and group velocities. The
Bogoliubov spectrum predicts the existence of sound waves, and the arising of
energetic and dynamical instabilities at critical values of the BEC
quasi-momentum which dramatically affect its coherence properties. We
investigate the dependence of the dipole and Bloch oscillation frequencies in
terms of an effective mass averaged over the density of the condensate. We
illustrate our results with several animations obtained solving numerically the
time-dependent Gross-Pitaevskii equation.Comment: 13 pages, 7 figures, movies and published paper available at
http://www.iop.org/EJ/abstract/1367-2630/5/1/11
Superfluidity of Bose-Einstein Condensate in An Optical Lattice: Landau-Zener Tunneling and Dynamical Instability
Superflow of Bose-Einstein condensate in an optical lattice is represented by
a Bloch wave, a plane wave with periodic modulation of the amplitude. We review
the theoretical results on the interaction effects in the energy dispersion of
the Bloch waves and in the linear stability of such waves. For sufficiently
strong repulsion between the atoms, the lowest Bloch band develops a loop at
the edge of the Brillouin zone, with the dramatic consequence of a finite
probability of Landau-Zener tunneling even in the limit of a vanishing external
force. Superfluidity can exist in the central region of the Brillouin zone in
the presence of a repulsive interaction, beyond which Landau instability takes
place where the system can lower its energy by making transition into states
with smaller Bloch wavenumbers. In the outer part of the region of Landau
instability, the Bloch waves are also dynamically unstable in the sense that a
small initial deviation grows exponentially in time. In the inner region of
Landau instability, a Bloch wave is dynamically stable in the absence of
persistent external perturbations. Experimental implications of our findings
will be discussed.Comment: A new section on tight-binding approximation is added with a new
figur
Phase II study of irinotecan in combination with temozolomide (TEMIRI) in children with recurrent or refractory medulloblastoma: a joint ITCC and SIOPE brain tumor study
BackgroundThis multicenter phase II study investigated temozolomide + irinotecan (TEMIRI) treatment in children with relapsed or refractory medulloblastoma.MethodsPatients received temozolomide 100–125 mg/m2/day (days 1–5) and irinotecan 10 mg/m2/day (days 1–5 and 8–12) every 3 weeks. The primary endpoint was tumor response within the first 4 cycles confirmed ≥4 weeks and assessed by an external response review committee (ERRC). In a 2-stage Optimum Simon design, ≥6 responses in the first 15 evaluable patients were required within the first 4 cycles for continued enrollment; a total of 19 responses from the first 46 evaluable patients was considered successful.ResultsSixty-six patients were treated. Seven responses were recorded during stage 1 and 15 in the first 46 ERRC evaluated patients (2 complete responses and 13 partial responses). The objective response rate during the first 4 cycles was 32.6% (95% confidence interval [CI], 19.5%–48.0%). Median duration of response was 27.0 weeks (7.7–44.1 wk). In 63 patients evaluated by local investigators, the objective response rate was 33.3% (95% CI, 22.0%–46.3%), and 68.3% (95% CI, 55.3%–79.4%) experienced clinical benefit. Median survival was 16.7 months (95% CI, 13.3–19.8). The most common grade 3 treatment-related nonhematologic adverse event was diarrhea (7.6%). Grade 3/4 treatment-related hematologic adverse events included neutropenia (16.7%), thrombocytopenia (12.1%), anemia (9.1%), and lymphopenia (9%).ConclusionsThe planned study primary endpoint was not met. However, its tolerability makes TEMIRI a suitable candidate chemotherapy backbone for molecularly targeted agents in future trials in this setting
- …