120 research outputs found
Recommended from our members
Laboratory and field evaluation of acetic acid-based lures for male Asian citrus psyllid, Diaphorina citri.
The Asian citrus psyllid (ACP) is a vector of a pathogen associated with greening and thus a major problem in citriculture worldwide. Lures are much needed for improving ACP trapping systems for monitoring populations and surveillance. Previously, we have identified acetic acid as a putative sex pheromone and measured formic acid- and propionic acid-elicited robust electroantennographic responses. We have now thoroughly examined in indoor behavioral assays (4-way olfactometer) and field tests the feasibility of these three semiochemicals as potential lures for trapping ACP. Formic acid, acetic acid, and propionic acid at appropriate doses are male-specific attractants and suitable lures for ACP traps, but they do not act synergistically. An acetic acid-based homemade lure, prepared by impregnating the attractant in a polymer, was active for a day. A newly developed slow-release formulation had equal performance but lasted longer, thus leading to an important improvement in ACP trap capture at low population densities
Large scale cosmic-ray anisotropy with KASCADE
The results of an analysis of the large scale anisotropy of cosmic rays in
the PeV range are presented. The Rayleigh formalism is applied to the right
ascension distribution of extensive air showers measured by the KASCADE
experiment.The data set contains about 10^8 extensive air showers in the energy
range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right
ascension distributions in this energy range. This accounts for all showers as
well as for subsets containing showers induced by predominantly light
respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes
are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary
energy.Comment: accepted by The Astrophysical Journa
Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons
The flux of cosmic-ray induced single hadrons near sea level has been
measured with the large hadron calorimeter of the KASCADE experiment. The
measurement corroborates former results obtained with detectors of smaller size
if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The
program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the
atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be
described with a power law parametrized as
dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV
region the proton flux compares well with the results from recent measurements
of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Search for cosmic-ray point sources with KASCADE
A survey of the northern hemisphere for astrophysical point sources with
continuous emission of high-energy cosmic rays is presented. Around 47 Mio
extensive air showers with primary energies above 300 TeV measured by
the KASCADE detector field are selected for this analysis. Besides the sky
survey, a search for signal excess in the region of the galactic plane and of
selected point source candidates has been performed. There is no evidence for
any significant excess. This is valid for an analysis of all recorded showers
as well as for a data set enhanced in gamma-ray induced showers. An upper flux
limit of around ms for a steady point source
that transits the zenith is obtained. Additionally, the distribution of the
arrival directions of extensive air showers with energies above 80 PeV were
studied by an autocorrelation analysis.Comment: accepted by The Astrophysical Journa
Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory
The Pierre Auger Collaboration has reported evidence for anisotropy in the
distribution of arrival directions of the cosmic rays with energies
eV. These show a correlation with the distribution
of nearby extragalactic objects, including an apparent excess around the
direction of Centaurus A. If the particles responsible for these excesses at
are heavy nuclei with charge , the proton component of the
sources should lead to excesses in the same regions at energies . We here
report the lack of anisotropies in these directions at energies above
(for illustrative values of ). If the anisotropies
above are due to nuclei with charge , and under reasonable
assumptions about the acceleration process, these observations imply stringent
constraints on the allowed proton fraction at the lower energies
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory
The advent of the Auger Engineering Radio Array (AERA) necessitates the
development of a powerful framework for the analysis of radio measurements of
cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air
shower radio emission in coincidence with the surface particle detectors and
fluorescence telescopes of the Pierre Auger Observatory, the radio analysis
functionality had to be incorporated in the existing hybrid analysis solutions
for fluoresence and surface detector data. This goal has been achieved in a
natural way by extending the existing Auger Offline software framework with
radio functionality. In this article, we lay out the design, highlights and
features of the radio extension implemented in the Auger Offline framework. Its
functionality has achieved a high degree of sophistication and offers advanced
features such as vectorial reconstruction of the electric field, advanced
signal processing algorithms, a transparent and efficient handling of FFTs, a
very detailed simulation of detector effects, and the read-in of multiple data
formats including data from various radio simulation codes. The source code of
this radio functionality can be made available to interested parties on
request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to
author list and references in v
Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory
We present the results of searches for dipolar-type anisotropies in different
energy ranges above eV with the surface detector array of
the Pierre Auger Observatory, reporting on both the phase and the amplitude
measurements of the first harmonic modulation in the right-ascension
distribution. Upper limits on the amplitudes are obtained, which provide the
most stringent bounds at present, being below 2% at 99% for EeV
energies. We also compare our results to those of previous experiments as well
as with some theoretical expectations.Comment: 28 pages, 11 figure
Search for Large-scale Anisotropy in the Arrival Direction of Cosmic Rays with KASCADE-Grande
We present the results of the search for large-scale anisotropies in the arrival directions of cosmic rays performed with the KASCADE-Grande experiment at energies higher than {10}15 eV. To eliminate spurious anisotropies due to atmospheric or instrumental effects we apply the east-west method. We show, using the solar time distribution of the number of counts, that this technique allow us to remove correctly the count variations not associated to real anisotropies. By applying the east-west method we obtain the distribution of number of counts in intervals of 20 minutes of sidereal time. This distribution is then analyzed by searching for a dipole component; the significance of the amplitude of the first harmonic is 3.5Ï, therefore, we derive its upper limit. The phase of the first harmonic is determined with an error of a few hours and is in agreement with the measurements obtained in the 1014 15 eV energy range by the EAS-TOP, IceCube, and IceTop experiments. This supports the hypothesis of a change of the phase of the first harmonic at energies greater than âŒ2 Ă 1014 eV
- âŠ