49 research outputs found

    L'RRK de Triomphe: a solution for LRRK2 GTPase activity?

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2) is a central protein in the pathogenesis of Parkinson's disease (PD), yet its normal function has proved stubbornly hard to elucidate. Even though it remains unclear how pathogenic mutations affect LRRK2 to cause PD, recent findings provide increasing cause for optimism. We summarise here the developing consensus over the effect of pathogenic mutations in the Ras of complex proteins and C-terminal of Roc domains on LRRK2 GTPase activity. This body of work has been greatly reinforced by our own study of the protective R1398H variant contained within the LRRK2 GTPase domain. Collectively, data point towards the pathogenicity of GTP-bound LRRK2 and strengthen a working model for LRRK2 GTPase function as a GTPase activated by dimerisation. Together with the identification of the protective R1398H variant as a valuable control for pathogenic mutations, we have no doubt that these triumphs for the LRRK2 field will accelerate research towards resolving LRRK2 function and towards new treatments for PD

    Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER

    Get PDF
    The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle that plays crucial roles in numerous cellular functions. We used emerging superresolution imaging technologies to clarify the morphology and dynamics of the peripheral ER, which contacts and modulates most other intracellular organelles. Peripheral components of the ER have classically been described as comprising both tubules and flat sheets. We show that this system consists almost exclusively of tubules at varying densities, including structures that we term ER matrices. Conventional optical imaging technologies had led to misidentification of these structures as sheets because of the dense clustering of tubular junctions and a previously uncharacterized rapid form of ER motion. The existence of ER matrices explains previous confounding evidence that had indicated the occurrence of ER "sheet" proliferation after overexpression of tubular junction-forming proteins

    Sequential screening nominates the Parkinson's disease associated kinase LRRK2 as a regulator of Clathrin-mediated endocytosis

    Get PDF
    Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.Neurological Motor Disorder

    A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover.

    Get PDF
    Mutations in LRRK2 are a common cause of genetic Parkinson's disease (PD). LRRK2 is a multi-domain Roco protein, harbouring kinase and GTPase activity. In analogy with a bacterial homologue, LRRK2 was proposed to act as a GTPase activated by dimerization (GAD), while recent reports suggest LRRK2 to exist under a monomeric and dimeric form in vivo. It is however unknown how LRRK2 oligomerization is regulated. Here, we show that oligomerization of a homologous bacterial Roco protein depends on the nucleotide load. The protein is mainly dimeric in the nucleotide-free and GDP-bound states, while it forms monomers upon GTP binding, leading to a monomer-dimer cycle during GTP hydrolysis. An analogue of a PD-associated mutation stabilizes the dimer and decreases the GTPase activity. This work thus provides insights into the conformational cycle of Roco proteins and suggests a link between oligomerization and disease-associated mutations in LRRK2

    Single particle trajectories reveal active endoplasmic reticulum luminal flow

    Get PDF
    The endoplasmic reticulum (ER), a network of membranous sheets and pipes, supports functions encompassing biogenesis of secretory proteins and delivery of functional solutes throughout the cell[1, 2]. Molecular mobility through the ER network enables these functionalities, but diffusion alone is not sufficient to explain luminal transport across supramicrometre distances. Understanding the ER structure–function relationship is critical in light of mutations in ER morphology-regulating proteins that give rise to neurodegenerative disorders[3, 4]. Here, super-resolution microscopy and analysis of single particle trajectories of ER luminal proteins revealed that the topological organization of the ER correlates with distinct trafficking modes of its luminal content: with a dominant diffusive component in tubular junctions and a fast flow component in tubules. Particle trajectory orientations resolved over time revealed an alternating current of the ER contents, while fast ER super-resolution identified energy-dependent tubule contraction events at specific points as a plausible mechanism for generating active ER luminal flow. The discovery of active flow in the ER has implications for timely ER content distribution throughout the cell, particularly important for cells with extensive ER-containing projections such as neurons.Wellcome Trust - 3-3249/Z/16/Z and 089703/Z/09/Z [Kaminski] UK Demential Research Institute [Avezov] Wellcome Trust - 200848/Z/16/Z, WT: UNS18966 [Ron] FRM Team Research Grant [Holcman] Engineering and Physical Sciences Research Council (EPSRC) - EP/L015889/1 and EP/H018301/1 [Kaminski] Medical Research Council (MRC) - MR/K015850/1 and MR/K02292X/1 [Kaminski

    3D micro-macro fluid-structure model of pressure relief valve leak tightness

    Get PDF
    Controlling and assessing the leak tightness of a Pressure Relief Valve (PRV) has been a challenge since the original design of the product. With more stringent demands from the nu- clear power industry for leakproof PRV’s, closer to the set point, there has been a drive by both industry and academia for a better design method for many known metal-to-metal contacting seal/surface problems. This paper outlines a numerical modelling strategy drawn from industry experience and metrology measurements and investigates the effects of lapping and surface finish on leakage rate. Key influencing parameters of surface form, waviness and roughness are incorporated in the analysis. The numerical approach requires efficient coupling of a non-linear structural Finite Element Analysis (FEA) with a Computational Fluid Dynamic (CFD) solver. This allows the examination of the relationship between deformation of the contacting surfaces, based on the applied spring force, and the resulting micro-flow of gas through any available gaps and the overall leakage to be found. The API527 Seat Tightness methodology is followed to allow leakage rates to be measured and the computational model to be preliminarily validated. Using this model, engineers can adjust and optimise the design of pressure relief valves to find the minimal leakage condition for a given configuration. In addition, the numerical approach can potentially be applied to other metal-to-metal contacting surface components, such as flanges with metal gaskets, and help eliminate leakage

    LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same

    Get PDF
    Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson's disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places

    Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units

    Full text link

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
    corecore