4,251 research outputs found
Superconductivity in Geometrically Frustrated Pyrochlore RbOs2O6
We report the basic thermodynamic properties of the new geometrically
frustrated beta-pyrochlore bulk superconductor RbOs2O6 with a critical
temperature Tc = 6.4 K. Specific heat measurements are performed in magnetic
fields up to 12 T. The electronic density of states at the Fermi level in the
normal state results in gamma = (33.7 \pm 0.2) mJ/mol_f.u./K^2. In the
superconducting state, the specific heat follows conventional BCS-type behavior
down to 1 K, i.e. over three orders of magnitude in specific heat data. The
upper critical field slope at Tc is 1.2 T/K, corresponding to a Maki-parameter
alpha = 0.64 \pm 0.1. From the upper critical field mu0 Hc2 \approx 6 T at 0 K,
we estimate a Ginzburg-Landau coherence length xi \approx 7.4 nm. RbOs2O6 is
the second reported metallic AB2O6 type pyrochlore compound after KOs2O6, and
one of only three pyrochlore superconductors in addition to Cd2Re2O7 and
KOs2O6
A question of hierarchy: matter effects with atmospheric neutrinos and anti-neutrinos
It is by now established that neutrinos mix, have (different) non-zero
masses, and therefore oscillate. The oscillation parameters themselves,
however, are not all well-known. An open problem is that of the neutrino mass
hierarchy. We study the possibility of determining the neutrino mass hierarchy
with atmospheric neutrinos using an iron calorimeter detector capable of charge
identification such as the proposed MONOLITH and ICAL/INO detectors. We find
that such detectors are sensitive to the sign of the mass-squared difference,
\delta_{32} = m_3^2 - m_2^2, provided the as-yet unknown mixing angle between
the first and third generations, \theta_{13}, is greater than 6 degrees (\sin^2
2\theta_{13} > 0.04). A result with a significance greater than 90% CL requires
large exposures (more than 500 kton-years) as well as good energy and angular
resolution of the detected muons (better than 15%), especially for small
\theta_{13}. Hence obtaining definitive results with such a detector is
difficult, unless \theta_{13} turns out to be large. In contrast, such
detectors can establish a clear oscillation pattern in atmospheric neutrinos in
about 150 kton-years, therefore determining the absolute value of \delta_{32}
and \sin^2 2 \theta_{23} to within 10%.Comment: 36 pages revtex with 14 eps figures; new section on statistical
significance when detector resolution is include
Neutrinoless Double Beta Decay and Future Neutrino Oscillation Precision Experiments
We discuss to what extent future precision measurements of neutrino mixing
observables will influence the information we can draw from a measurement of
(or an improved limit on) neutrinoless double beta decay. Whereas the Delta m^2
corresponding to solar and atmospheric neutrino oscillations are expected to be
known with good precision, the parameter theta_{12} will govern large part of
the uncertainty. We focus in particular on the possibility of distinguishing
the neutrino mass hierarchies and on setting a limit on the neutrino mass. We
give the largest allowed values of the neutrino masses which allow to
distinguish the normal from the inverted hierarchy. All aspects are discussed
as a function of the uncertainty stemming from the involved nuclear matrix
elements. The implications of a vanishing, or extremely small, effective mass
are also investigated. By giving a large list of possible neutrino mass
matrices and their predictions for the observables, we finally explore how a
measurement of (or an improved limit on) neutrinoless double beta decay can
help to identify the neutrino mass matrix if more precise values of the
relevant parameters are known.Comment: 35 pages, 12 figures. Comments and references added. To appear in PR
Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity of one-dimensional quarter-filled spin-density-wave conductors
We study spin fluctuations in quarter-filled one-dimensional
spin-density-wave systems in presence of short-range Coulomb interactions. By
applying a path integral method, the spin-wave velocity is calculated as a
function of on-site (U), nearest (V) and next-nearest (V_2) neighbor-site
interactions. With increasing V or V_2, the pure spin-density-wave state
evolves into a state with coexisting spin- and charge-density waves. The
spin-wave velocity is reduced when several density waves coexist in the ground
state, and may even vanish at large V. The effect of dimerization along the
chain is also considered.Comment: REVTeX, 11 pages, 9 figure
Novel vortex lattice transition in d-wave superconductors
We study the vortex state in a magnetic field parallel to the axis in the
framework of the extended Ginzburg Landau equation. We find the vortex acquires
a fourfold modulation proportional to where is the angle
makes with the -axis. This term gives rise to an attractive
interaction between two vortices when they are aligned parallel to or
. We predict the first order vortex lattice transition at
from triangular into the square lattice
tilted by from the axis. This gives the critical field
a few Tesla for YBCO and Bi2212 monocrystals at low temperatures ().Comment: 6 pages, 4 figure
Charge current in ferromagnet - triplet superconductor junctions
We calculate the tunneling conductance spectra of a ferromagnetic metal /
insulator / triplet superconductor from the reflection amplitudes using the
Blonder-Tinkham-Klapwijk (BTK) formula. For the triplet superconductor, we
assume one special -wave order parameter, having line nodes, and two two
dimensional -wave order parameters with line nodes, breaking the time
reversal symmetry. Also we examine nodeless pairing potentials. The evolution
of the spectra with the exchange potential depends solely on the topology of
the gap. The weak Andreev reflection within the ferromagnet results in the
suppression of the tunneling conductance and eliminates the resonances due to
the anisotropy of the pairing potential. The tunneling spectra splits
asymmetrically with respect to under the influence of an external
magnetic field. The results can be used to distinguish between the possible
candidate pairing states of the superconductor SrRuO.Comment: 15 pages with 8 figure
Pressure dependence of the magnetization of URu2Si2
The ground state of URu2Si2 changes from so-called hidden order (HO) to
large-moment antiferromagnetism (LMAF) upon applying hydrostatic pressure in
excess of 14 kbar. We report the dc-magnetization M(B,T,p) of URu2Si2 for
magnetic fields B up to 12 T, temperatures T in the range 2 to 100 K, and
pressure p up to 17 kbar. Remarkably, characteristic scales such as the
coherence temperature T*, the transition temperature T0, and the anisotropy in
the magnetization depend only weakly on the applied pressure. However, the
discontinuity in dM/dT at T0, which measures the magnetocaloric effect,
decreases nearly 50 % upon applying 17 kbar for M and B parallel to the
tetragonal c-axis, while it increases 15-fold for the a-axis. Our findings
suggest that the HO and LMAF phases have an astonishing degree of similarity in
their physical properties, but a key difference is the magnetocaloric effect
near T0 in the basal plane
Collider Signature of Bulk Neutrinos in Large Extra Dimensions
We consider the collider signature of right-handed neutrinos propagating in
(large) extra dimensions, and interacting with Standard Model fields
only through a Yukawa coupling to the left-handed neutrino and the Higgs boson.
These theories are attractive as they can explain the smallness of the neutrino
mass, as has already been shown. We show that if is bigger than two,
it can result in an enhancement in the production rate of the Higgs boson,
decaying either invisibly or to a anti- quark pair, associated with an
isolated high charged lepton and missing transverse energy at future
hadron colliders, such as the LHC. The enhancement is due to the large number
of Kaluza-Klein neutrinos produced in the final state. The observation of the
signal event would provide an opportunity to distinguish between the normal and
inverted neutrino mass hierarchies, and to determine the absolute scale of
neutrino masses by measuring the asymmetry of the observed event numbers in the
electron and muon channels.Comment: 31 pages, 13 figures. v2: Added discussion on PDF uncertainties,
added reference
Glucose metabolism and oscillatory behavior of pancreatic islets
A variety of oscillations are observed in pancreatic islets.We establish a
model, incorporating two oscillatory systems of different time scales: One is
the well-known bursting model in pancreatic beta-cells and the other is the
glucose-insulin feedback model which considers direct and indirect feedback of
secreted insulin. These two are coupled to interact with each other in the
combined model, and two basic assumptions are made on the basis of biological
observations: The conductance g_{K(ATP)} for the ATP-dependent potassium
current is a decreasing function of the glucose concentration whereas the
insulin secretion rate is given by a function of the intracellular calcium
concentration. Obtained via extensive numerical simulations are complex
oscillations including clusters of bursts, slow and fast calcium oscillations,
and so on. We also consider how the intracellular glucose concentration depends
upon the extracellular glucose concentration, and examine the inhibitory
effects of insulin.Comment: 11 pages, 16 figure
What Happens If an Unbroken Flavor Symmetry Exists?
Without assuming any specific flavor symmetry and/or any specific mass matrix
forms, it is demonstrated that if a flavor symmetry (a discrete symmetry, a
U(1) symmetry, and so on) exists, we cannot obtain the CKM quark mixing matrix
and the MNS lepton mixing matrix except for those between two families
for the case with the completely undegenerated fermion masses, so that we can
never give the observed CKM and MNS mixings. Only in the limit of (), we can obtain three family mixing with an interesting
constraint ().Comment: 10 pages, no figure, title and presentation change
- …