1,968 research outputs found
The End of Time?
I discuss J. Barbour's Machian theories of dynamics, and his proposal that a
Machian perspective enables one to solve the problem of time in quantum
geometrodynamics (by saying that there is no time). I concentrate on his recent
book 'The End of Time' (1999).Comment: 48 pages Latex. A shortened version will appear in 'The British
Journal for Philosophy of Science
Experience applicable to the Viking lander from a study of related space flight projects
Related space mission data for baseline evaluation of Viking Lander design and operatio
Macroevolution and macroecology through deep time
The fossil record documents two mutually exclusive macroevolutionary modes separated by the transitional Ediacaran Period. Despite the early appearance of crown eukaryotes and an at least partially oxygenated atmosphere, the pre-Ediacaran biosphere was populated almost exclusively by microscopic organisms exhibiting low diversity, no biogeographical partitioning and profound morphological/evolutionary stasis. By contrast, the post-Ediacaran biosphere is characterized by large diverse organisms, bioprovinciality and conspicuously dynamic macroevolution. The difference can be understood in terms of the unique escalatory coevolution accompanying the early Ediacaran introduction of eumetazoans, followed by their early Cambrian (Tommotian) expansion into the pelagic realm. Eumetazoans reinvented the rules of macroecology through their invention of multitrophic food webs, large body size, life-history trade-offs, ecological succession, biogeography, major increases in standing biomass, eukaryote-dominated phytoplankton and the potential for mass extinction. Both the pre-Ediacaran and the post-Ediacaran biospheres were inherently stable, but the former derived from the simplicity of superabundant microbes exposed to essentially static, physical environments, whereas the latter is based on eumetazoan-induced diversity and dynamic, biological environments. The c. 100-myr Ediacaran transition (extending to the base of the Tommotian) can be defined on evolutionary criteria, and might usefully be incorporated into the Phanerozoic
The Oxford Questions on the foundations of quantum physics
The twentieth century saw two fundamental revolutions in physics --
relativity and quantum. Daily use of these theories can numb the sense of
wonder at their immense empirical success. Does their instrumental
effectiveness stand on the rock of secure concepts or the sand of unresolved
fundamentals? Does measuring a quantum system probe, or even create, reality,
or merely change belief? Must relativity and quantum theory just co-exist or
might we find a new theory which unifies the two? To bring such questions into
sharper focus, we convened a conference on Quantum Physics and the Nature of
Reality. Some issues remain as controversial as ever, but some are being nudged
by theory's secret weapon of experiment.Comment: 8 page
Causation, Measurement Relevance and No-conspiracy in EPR
In this paper I assess the adequacy of no-conspiracy conditions employed in
the usual derivations of the Bell inequality in the context of EPR
correlations. First, I look at the EPR correlations from a purely
phenomenological point of view and claim that common cause explanations of
these cannot be ruled out. I argue that an appropriate common cause explanation
requires that no-conspiracy conditions are re-interpreted as mere common
cause-measurement independence conditions. In the right circumstances then,
violations of measurement independence need not entail any kind of conspiracy
(nor backwards in time causation). To the contrary, if measurement operations
in the EPR context are taken to be causally relevant in a specific way to the
experiment outcomes, their explicit causal role provides the grounds for a
common cause explanation of the corresponding correlations.Comment: 20 pages, 1 figur
Abundant Methanol Masers but no New Evidence for Star Formation in GCM0.253+0.016
We present new observations of the quiescent giant molecular cloud
GCM0.253+0.016 in the Galactic center, using the upgraded Karl G. Jansky Very
Large Array. Observations were made at wavelengths near 1 cm, at K (24 to 26
GHz) and Ka (27 and 36 GHz) bands, with velocity resolutions of 1-3 km/s and
spatial resolutions of ~0.1 pc, at the assumed 8.4 kpc distance of this cloud.
The continuum observations of this cloud are the most sensitive yet made, and
reveal previously undetected emission which we attribute primarily to free-free
emission from external ionization of the cloud. In addition to the sensitive
continuum map, we produce maps of 12 molecular lines: 8 transitions of NH3 --
(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7) and (9,9), as well as the HC3N (3-2)
and (4-3) lines, and CH3OH 4(-1) - 3(0) the latter of which is known to be a
collisionally-excited maser. We identify 148 CH3OH 4(-1) - 3(0) (36.2 GHz)
sources, of which 68 have brightness temperatures in excess of the highest
temperature measured for this cloud (400 K) and can be confirmed to be masers.
The majority of these masers are concentrated in the southernmost part of the
cloud. We find that neither these masers nor the continuum emission in this
cloud provide strong evidence for ongoing star formation in excess of that
previously inferred by the presence of an H2O maser.Comment: 33 pages, 4 tables, 9 figures; ApJ Accepte
Constructional and functional morphology of Ediacaran rangeomorphs
Ediacaran rangeomorphs were the first substantially macroscopic organisms to appear in the fossil record, but their underlying biology remains problematic. Although demonstrably heterotrophic, their current interpretation as osmotrophic consumers of dissolved organic carbon (DOC) is incompatible with the inertial (> Re) and advective (> Pe) fluid-dynamics accompanying macroscopic length-scales. The key to resolving rangeomorph feeding and physiology lies in their underlying construction. Taphonomic analysis of three-dimensionally preserved Charnia from the White Sea identifies the presence of large, originally water-filled compartments that served both as a hydrostatic exoskeleton and semi-isolated digestion chambers capable of processing recalcitrant substrates – likely in conjunction with a resident microbiome. At the same time, the hydrodynamically exposed outer surface of macroscopic rangeomorphs would have dramatically enhanced both gas exchange and food delivery. A bag-like epithelium filled with transiently circulated seawater offers an exceptionally efficient means of constructing a simple, DOC-consuming, multicellular heterotroph. Such a bodyplan is broadly comparable to that of anthozoan cnidarians – minus such derived features as muscle, tentacles and a centralized mouth. Along with other early bag-like fossils, rangeomorphs can be reliably identified as total-group eumetazoans, potentially colonial stem-group cnidarians
Interacting classical and quantum ensembles
A consistent description of interactions between classical and quantum
systems is relevant to quantum measurement theory, and to calculations in
quantum chemistry and quantum gravity. A solution is offered here to this
longstanding problem, based on a universally-applicable formalism for ensembles
on configuration space. This approach overcomes difficulties arising in
previous attempts, and in particular allows for backreaction on the classical
ensemble, conservation of probability and energy, and the correct classical
equations of motion in the limit of no interaction. Applications include
automatic decoherence for quantum ensembles interacting with classical
measurement apparatuses; a generalisation of coherent states to hybrid harmonic
oscillators; and an equation for describing the interaction of quantum matter
fields with classical gravity, that implies the radius of a Robertson-Walker
universe with a quantum massive scalar field can be sharply defined only for
particular `quantized' values.Comment: 31 pages, minor clarifications and one Ref. added, to appear in PR
- …