1,815 research outputs found
Ratio control in a cascade model of cell differentiation
We propose a kind of reaction-diffusion equations for cell differentiation,
which exhibits the Turing instability. If the diffusivity of some variables is
set to be infinity, we get coupled competitive reaction-diffusion equations
with a global feedback term. The size ratio of each cell type is controlled by
a system parameter in the model. Finally, we extend the model to a cascade
model of cell differentiation. A hierarchical spatial structure appears as a
result of the cell differentiation. The size ratio of each cell type is also
controlled by the system parameter.Comment: 13 pages, 7 figure
Curvature Dependent Diffusion Flow on Surface with Thickness
Particle diffusion in a two dimensional curved surface embedded in is
considered. In addition to the usual diffusion flow, we find a new flow with an
explicit curvature dependence. New diffusion equation is obtained in
(thickness of surface) expansion. As an example, the surface of elliptic
cylinder is considered, and curvature dependent diffusion coefficient is
calculated.Comment: 8 pages, 8 figures, Late
Turing's model for biological pattern formation and the robustness problem
One of the fundamental questions in developmental biology is how the vast range of pattern and structure we observe in nature emerges from an almost uniformly homogeneous fertilized egg. In particular, the mechanisms by which biological systems maintain robustness, despite being subject to numerous sources of noise, are shrouded in mystery. Postulating plausible theoretical models of biological heterogeneity is not only difficult, but it is also further complicated by the problem of generating robustness, i.e. once we can generate a pattern, how do we ensure that this pattern is consistently reproducible in the face of perturbations to the domain, reaction time scale, boundary conditions and so forth. In this paper, not only do we review the basic properties of Turing's theory, we highlight the successes and pitfalls of using it as a model for biological systems, and discuss emerging developments in the area
Stability of spikes in the shadow Gierer-Meinhardt system with Robin boundary conditions
We consider the shadow system of the Gierer-Meinhardt system in a smooth bounded domain RN,At=2A−A+,x, t>0, ||t=−||+Ardx, t>0 with the Robin boundary condition +aAA=0, x, where aA>0, the reaction rates (p,q,r,s) satisfy 1<p<()+, q>0, r>0, s0, 1<<+, the diffusion constant is chosen such that 1, and the time relaxation constant is such that 0. We rigorously prove the following results on the stability of one-spike solutions: (i) If r=2 and 1<p<1+4/N or if r=p+1 and 1<p<, then for aA>1 and sufficiently small the interior spike is stable. (ii) For N=1 if r=2 and 1<p3 or if r=p+1 and 1<p<, then for 0<aA<1 the near-boundary spike is stable. (iii) For N=1 if 3<p<5 and r=2, then there exist a0(0,1) and µ0>1 such that for a(a0,1) and µ=2q/(s+1)(p−1)(1,µ0) the near-boundary spike solution is unstable. This instability is not present for the Neumann boundary condition but only arises for the Robin boundary condition. Furthermore, we show that the corresponding eigenvalue is of order O(1) as 0. ©2007 American Institute of Physic
Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers
The formation of Turing patterns was investigated in thin cylindrical layers using the Lengyel-Epstein
model of the chlorine dioxide-iodine-malonic acid reaction. The influence of the width of the layer
W and the diameter D of the inner cylinder on the pattern with intrinsic wavelength l were
determined in simulations with initial random noise perturbations to the uniform state for W< l/2
and D l or lower. We show that the geometric constraints of the reaction domain may result in the
formation of helical Turing patterns with parameters that give stripes (b ¼ 0.2) or spots (b ¼ 0.37) in
two dimensions. For b ¼ 0.2, the helices were composed of lamellae and defects were likely as the
diameter of the cylinder increased. With b ¼ 0.37, the helices consisted of semi-cylinders and
the orientation of stripes on the outer surface (and hence winding number) increased with increasing
diameter until a new stripe appeared
Noise-induced inhibitory suppression of malfunction neural oscillators
Motivated by the aim to find new medical strategies to suppress undesirable
neural synchronization we study the control of oscillations in a system of
inhibitory coupled noisy oscillators. Using dynamical properties of inhibition,
we find regimes when the malfunction oscillations can be suppressed but the
information signal of a certain frequency can be transmitted through the
system. The mechanism of this phenomenon is a resonant interplay of noise and
the transmission signal provided by certain value of inhibitory coupling.
Analyzing a system of three or four oscillators representing neural clusters,
we show that this suppression can be effectively controlled by coupling and
noise amplitudes.Comment: 10 pages, 14 figure
Modelling cell motility and chemotaxis with evolving surface finite elements
We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/maskae/CV_Warwick/Chemotaxis.html
Existence and Stability of a Spike in the Central Component for a Consumer Chain Model
We study a three-component consumer chain model which is based on Schnakenberg type kinetics. In this model there is one consumer feeding on the producer and a second consumer feeding on the first consumer. This means that the first consumer (central component) plays a hybrid role: it acts both as consumer and producer. The model is an extension of the Schnakenberg model suggested in \cite{gm,schn1} for which there is only one producer and one consumer. It is assumed that both the producer and second consumer diffuse much faster than the central component. We construct single spike solutions on an interval for which the profile of the first consumer is that of a spike. The profiles of the producer and the second consumer only vary on a much larger spatial scale due to faster diffusion of these components. It is shown that there exist two different single spike solutions if the feed rates are small enough: a large-amplitude and a small-amplitude spike. We study the stability properties of these solutions in terms of the system parameters. We use a rigorous analysis for the linearized operator around single spike solutions based on nonlocal eigenvalue problems. The following result is established: If the time-relaxation constants for both producer and second consumer vanish, the large-amplitude spike solution is stable and the small-amplitude spike solution is unstable. We also derive results on the stability of solutions when these two time-relaxation constants are small. We show a new effect: if the time-relaxation constant of the second consumer is very small, the large-amplitude spike solution becomes unstable. To the best of our knowledge this phenomenon has not been observed before for the stability of spike patterns. It seems that this behavior is not possible for two-component reaction-diffusion systems but that at least three components are required. Our main motivation to study this system is mathematical since the novel interaction of a spike in the central component with two other components results in new types of conditions for the existence and stability of a spike. This model is realistic if several assumptions are made: (i) cooperation of consumers is prevalent in the system, (ii) the producer and the second consumer diffuse much faster than the first consumer, and (iii) there is practically an unlimited pool of producer. The first assumption has been proven to be correct in many types of consumer groups or populations, the second assumption occurs if the central component has a much smaller mobility than the other two, the third assumption is realistic if the consumers do not feel the impact of the limited amount of producer due to its large quantity. This chain model plays a role in population biology, where consumer and producer are often called predator and prey. This system can also be used as a model for a sequence of irreversible autocatalytic reactions in a container which is in contact with a well-stirred reservoir
Periodic pattern formation in reaction-diffusion systems -an introduction for numerical simulation
The aim of the present review is to provide a comprehensive explanation of Turing reaction–diffusion systems in sufficient detail to allow readers to perform numerical calculations themselves. The reaction–diffusion model is widely studied in the field of mathematical biology, serves as a powerful paradigm model for self-organization and is beginning to be applied to actual experimental systems in developmental biology. Despite the increase in current interest, the model is not well understood among experimental biologists, partly because appropriate introductory texts are lacking. In the present review, we provide a detailed description of the definition of the Turing reaction–diffusion model that is comprehensible without a special mathematical background, then illustrate a method for reproducing numerical calculations with Microsoft Excel. We then show some examples of the patterns generated by the model. Finally, we discuss future prospects for the interdisciplinary field of research involving mathematical approaches in developmental biology
Subbarrel patterns in somatosensory cortical barrels can emerge from local dynamic instabilities
Complex spatial patterning, common in the brain as well as in other biological systems, can emerge as a result of dynamic interactions that occur locally within developing structures. In the rodent somatosensory cortex, groups of neurons called "barrels" correspond to individual whiskers on the contralateral face. Barrels themselves often contain subbarrels organized into one of a few characteristic patterns. Here we demonstrate that similar patterns can be simulated by means of local growth-promoting and growth-retarding interactions within the circular domains of single barrels. The model correctly predicts that larger barrels contain more spatially complex subbarrel patterns, suggesting that the development of barrels and of the patterns within them may be understood in terms of some relatively simple dynamic processes. We also simulate the full nonlinear equations to demonstrate the predictive value of our linear analysis. Finally, we show that the pattern formation is robust with respect to the geometry of the barrel by simulating patterns on a realistically shaped barrel domain. This work shows how simple pattern forming mechanisms can explain neural wiring both qualitatively and quantitatively even in complex and irregular domains. © 2009 Ermentrout et al
- …