1,564 research outputs found

    Active swarms on a sphere

    Get PDF
    Here we show that coupling to curvature has profound effects on collective motion in active systems, leading to patterns not observed in flat space. Biological examples of such active motion in curved environments are numerous: curvature and tissue folding are crucial during gastrulation, epithelial and endothelial cells move on constantly growing, curved crypts and vili in the gut, and the mammalian corneal epithelium grows in a steady-state vortex pattern. On the physics side, droplets coated with actively driven microtubule bundles show active nematic patterns. We study a model of self-propelled particles with polar alignment on a sphere. Hallmarks of these motion patterns are a polar vortex and a circulating band arising due to the incompatibility between spherical topology and uniform motion - a consequence of the hairy ball theorem. We present analytical results showing that frustration due to curvature leads to stable elastic distortions storing energy in the band.Comment: 5 pages, 4 figures plus Supporting Informatio

    Phase diagram of a model for a binary mixture of nematic molecules on a Bethe lattice

    Full text link
    We investigate the phase diagram of a discrete version of the Maier-Saupe model with the inclusion of additional degrees of freedom to mimic a distribution of rodlike and disklike molecules. Solutions of this problem on a Bethe lattice come from the analysis of the fixed points of a set of nonlinear recursion relations. Besides the fixed points associated with isotropic and uniaxial nematic structures, there is also a fixed point associated with a biaxial nematic structure. Due to the existence of large overlaps of the stability regions, we resorted to a scheme to calculate the free energy of these structures deep in the interior of a large Cayley tree. Both thermodynamic and dynamic-stability analyses rule out the presence of a biaxial phase, in qualitative agreement with previous mean-field results

    A note on the computation of geometrically defined relative velocities

    Full text link
    We discuss some aspects about the computation of kinematic, spectroscopic, Fermi and astrometric relative velocities that are geometrically defined in general relativity. Mainly, we state that kinematic and spectroscopic relative velocities only depend on the 4-velocities of the observer and the test particle, unlike Fermi and astrometric relative velocities, that also depend on the acceleration of the observer and the corresponding relative position of the test particle, but only at the event of observation and not around it, as it would be deduced, in principle, from the definition of these velocities. Finally, we propose an open problem in general relativity that consists on finding intrinsic expressions for Fermi and astrometric relative velocities avoiding terms that involve the evolution of the relative position of the test particle. For this purpose, the proofs given in this paper can serve as inspiration.Comment: 8 pages, 2 figure

    Circular Orbits in Einstein-Gauss-Bonnet Gravity

    Get PDF
    The stability under radial and vertical perturbations of circular orbits associated to particles orbiting a spherically symmetric center of attraction is study in the context of the n-dimensional: Newtonian theory of gravitation, Einstein's general relativity, and Einstein-Gauss-Bonnet theory of gravitation. The presence of a cosmological constant is also considered. We find that this constant as well as the Gauss-Bonnet coupling constant are crucial to have stability for n>4n>4.Comment: 11 pages, 4 figs, RevTex, Phys. Rev. D, in pres

    Minimal resonances in annular non-Euclidean strips

    Get PDF
    Differential growth processes play a prominent role in shaping leaves and biological tissues. Using both analytical and numerical calculations, we consider the shapes of closed, elastic strips which have been subjected to an inhomogeneous pattern of swelling. The stretching and bending energies of a closed strip are frustrated by compatibility constraints between the curvatures and metric of the strip. To analyze this frustration, we study the class of "conical" closed strips with a prescribed metric tensor on their center line. The resulting strip shapes can be classified according to their number of wrinkles and the prescribed pattern of swelling. We use this class of strips as a variational ansatz to obtain the minimal energy shapes of closed strips and find excellent agreement with the results of a numerical bead-spring model. Within this class of strips, we derive a condition under which a strip can have vanishing mean curvature along the center line.Comment: 14 pages, 13 figures. Published version. Updated references and added 2 figure

    From Golden Spirals to Constant Slope Surfaces

    Full text link
    In this paper, we find all constant slope surfaces in the Euclidean 3-space, namely those surfaces for which the position vector of a point of the surface makes constant angle with the normal at the surface in that point. These surfaces could be thought as the bi-dimensional analogue of the generalized helices. Some pictures are drawn by using the parametric equations we found.Comment: 11 pages, 8 figure

    Magnetovac Cylinder to Magnetovac Torus

    Get PDF
    A method for mapping known cylindrical magnetovac solutions to solutions in torus coordinates is developed. Identification of the cylinder ends changes topology from R1 x S1 to S1 x S1. An analytic Einstein-Maxwell solution for a toroidal magnetic field in tori is presented. The toroidal interior is matched to an asymptotically flat vacuum exterior, connected by an Israel boundary layer.Comment: to appear in Class. Quant. Gra

    Generalization of Linearized Gouy-Chapman-Stern Model of Electric Double Layer for Nanostructured and Porous Electrodes: Deterministic and Stochastic Morphology

    Full text link
    We generalize linearized Gouy-Chapman-Stern theory of electric double layer for nanostructured and morphologically disordered electrodes. Equation for capacitance is obtained using linear Gouy-Chapman (GC) or Debye-u¨\rm{\ddot{u}}ckel equation for potential near complex electrode/electrolyte interface. The effect of surface morphology of an electrode on electric double layer (EDL) is obtained using "multiple scattering formalism" in surface curvature. The result for capacitance is expressed in terms of the ratio of Gouy screening length and the local principal radii of curvature of surface. We also include a contribution of compact layer, which is significant in overall prediction of capacitance. Our general results are analyzed in details for two special morphologies of electrodes, i.e. "nanoporous membrane" and "forest of nanopillars". Variations of local shapes and global size variations due to residual randomness in morphology are accounted as curvature fluctuations over a reference shape element. Particularly, the theory shows that the presence of geometrical fluctuations in porous systems causes enhanced dependence of capacitance on mean pore sizes and suppresses the magnitude of capacitance. Theory emphasizes a strong influence of overall morphology and its disorder on capacitance. Finally, our predictions are in reasonable agreement with recent experimental measurements on supercapacitive mesoporous systems

    Geometry of the energy landscape of the self-gravitating ring

    Full text link
    We study the global geometry of the energy landscape of a simple model of a self-gravitating system, the self-gravitating ring (SGR). This is done by endowing the configuration space with a metric such that the dynamical trajectories are identified with geodesics. The average curvature and curvature fluctuations of the energy landscape are computed by means of Monte Carlo simulations and, when possible, of a mean-field method, showing that these global geometric quantities provide a clear geometric characterization of the collapse phase transition occurring in the SGR as the transition from a flat landscape at high energies to a landscape with mainly positive but fluctuating curvature in the collapsed phase. Moreover, curvature fluctuations show a maximum in correspondence with the energy of a possible further transition, occurring at lower energies than the collapse one, whose existence had been previously conjectured on the basis of a local analysis of the energy landscape and whose effect on the usual thermodynamic quantities, if any, is extremely weak. We also estimate the largest Lyapunov exponent λ\lambda of the SGR using the geometric observables. The geometric estimate always gives the correct order of magnitude of λ\lambda and is also quantitatively correct at small energy densities and, in the limit NN\to\infty, in the whole homogeneous phase.Comment: 20 pages, 12 figure

    On the differential geometry of curves in Minkowski space

    Full text link
    We discuss some aspects of the differential geometry of curves in Minkowski space. We establish the Serret-Frenet equations in Minkowski space and use them to give a very simple proof of the fundamental theorem of curves in Minkowski space. We also state and prove two other theorems which represent Minkowskian versions of a very known theorem of the differential geometry of curves in tridimensional Euclidean space. We discuss the general solution for torsionless paths in Minkowki space. We then apply the four-dimensional Serret-Frenet equations to describe the motion of a charged test particle in a constant and uniform electromagnetic field and show how the curvature and the torsions of the four-dimensional path of the particle contain information on the electromagnetic field acting on the particle.Comment: 10 pages. Typeset using REVTE
    corecore