10,335 research outputs found

    Three Super-Earths Orbiting HD 7924

    Get PDF
    We report the discovery of two super-Earth mass planets orbiting the nearby K0.5 dwarf HD 7924 which was previously known to host one small planet. The new companions have masses of 7.9 and 6.4 M_\oplus, and orbital periods of 15.3 and 24.5 days. We perform a joint analysis of high-precision radial velocity data from Keck/HIRES and the new Automated Planet Finder Telescope (APF) to robustly detect three total planets in the system. We refine the ephemeris of the previously known planet using five years of new Keck data and high-cadence observations over the last 1.3 years with the APF. With this new ephemeris, we show that a previous transit search for the inner-most planet would have covered 70% of the predicted ingress or egress times. Photometric data collected over the last eight years using the Automated Photometric Telescope shows no evidence for transits of any of the planets, which would be detectable if the planets transit and their compositions are hydrogen-dominated. We detect a long-period signal that we interpret as the stellar magnetic activity cycle since it is strongly correlated with the Ca II H and K activity index. We also detect two additional short-period signals that we attribute to rotationally-modulated starspots and a one month alias. The high-cadence APF data help to distinguish between the true orbital periods and aliases caused by the window function of the Keck data. The planets orbiting HD 7924 are a local example of the compact, multi-planet systems that the Kepler Mission found in great abundance.Comment: Accepted to ApJ on 4/7/201

    Current Issues and Future Directions in Simulation-Based Training in North America

    Get PDF
    A number of emerging challenges including globalization, economic pressures, and the changing nature of work have combined to create a business environment that demands innovative, flexible training solutions. Simulations are a promising tool for creating more realistic, experiential learning environments to meet these challenges. Unfortunately, the current literature on simulation-based training paints a mixed picture as to the effectiveness of simulations as training tools, with most of the previous research focusing on the specific technologies used in simulation design and little theory-based research focusing on the instructional capabilities or learning processes underlying these technologies. This article examines the promise and perils of simulation-based training, reviews research that has examined the effectiveness of simulations as training tools, identifies pressing research needs, and presents an agenda for future theory-driven research aimed at addressing those needs

    Effects of Burial and Soil Condition on Postharvest Mortality of Boll Weevils (Coleoptera: Curculionidae) in Fallen Cotton Fruit

    Get PDF
    Effects of soil condition and burial on boll weevil, Anthonomus grandis grandis Boheman, mortality in fallen cotton, Gossypium hirsutum L., fruit were assessed in this study. During hot weather immediately after summer harvest operations in the Lower Rio Grande Valley of Texas, burial of infested fruit in conventionally tilled field plots permitted significantly greater survival of weevils than in no-tillage plots. Burial of infested squares protected developing weevils from heat and desiccation that cause high mortality on the soil surface during and after harvest in midsummer and late summer. A laboratory assay showed that burial of infested squares resulted in significantly greater weevil mortality in wet than in dry sandy or clay soils. Significantly fewer weevils rose to the soil surface after burial of infested bolls during winter compared with bolls set on the soil surface, a likely result of wetting by winter rainfall. A combination of leaving infested fruit exposed to heat before the onset of cooler winter temperatures and burial by tillage when temperatures begin to cool might be an important tactic for reducing populations of boll weevils that overwinter in cotton fields

    New atlas of IR solar spectra

    Get PDF
    Over 4500 absorption lines have been marked on the spectra and the corresponding line positions tabulated. The associated absorbing telluric or solar species for more than 90% of these lines have been identified and only a fraction of the unidentified lines have peak absorptions greater than a few percent. The high resolution and the low Sun spectra greatly enhance the sensitivity limits for identification of trace constituents

    Temporal variability and statistics of the Strehl ratio in adaptive-optics images

    Full text link
    We have investigated the temporal variability and statistics of the "instantaneous" Strehl ratio. The observations were carried out with the 3.63-m AEOS telescope equipped with a high-order adaptive optics system. In this paper Strehl ratio is defined as the peak intensity of a single short exposure. We have also studied the behaviour of the phase variance computed on the reconstructed wavefronts. We tested the Marechal approximation and used it to explain the observed negative skewness of the Strehl ratio distribution. The estimate of the phase variance is shown to fit a three-parameter Gamma distribution model. We show that simple scaling of the reconstructed wavefronts has a large impact on the shape of the Strehl ratio distribution.Comment: submitted to PAS

    Characterization of bacterial lipooligosaccharides by delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry

    Get PDF
    Matrix-assisted laser desorption ionization (MALDI) with a time-of-flight analyzer has been used to analyze bacterial lipooligosaccharides (LOS). Crude LOS preparations from pathogenic strains of Haemophilus influenzae and Haemophilus ducreyi and a commercial preparation of lipopolysaccharide from Salmonella typhimurium were treated with hydrazine to remove O-linked fatty acids on the lipid A moiety. The resulting O-deacylated LOS forms were water soluble and more amenable to cocrystallization with standard MALDI matrices such as 2,5-dihydroxybenzoic acid and 1-hydroxyisoquinoline. Under continuous extraction conditions, O-deacylated LOS yielded broad peaks with abundant salt adducts as well as forming prompt fragments through β-elimination of phosphoric acid, that is, [M-H3PO4-H]. However, when a time delay was used between ionization and extraction (“delayed extraction”) a significant improvement was seen in both mass resolution and the stability of the molecular ions against β-elimination of phosphoric acid, especially in the negative-ion mode. Both an external two-point calibration and an internal single-point calibration were used to assign masses, the latter of which provided the highest degree of accuracy (better than 0.01% in most cases). At higher laser powers, the LOS molecules cleave readily between the oligosaccharide and lipid A moieties yielding a number of prompt fragments. Postsource decay (PSD) analysis of selected molecular ions provided a set of fragments similar to those seen in the linear spectra, although they were more limited in number because they were derived from a single LOS-glycoform. Both the prompt and PSD fragments provided important structural information, especially in assigning the phosphate and phosphoethanolamine substitution pattern of the lipid A and oligosaccharide portions of LOS. Last, with the addition of ethylenediaminetetraacetic acid followed by pulsed sonication, the relatively insoluble (and impure) LOS preparations yielded MALDI spectra similar to the O-deacylated LOS, although these intact LOS preparations required higher laser powers to ionize and were generally more affected by competing impurities

    Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

    Get PDF
    We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ∼ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ∼1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase

    Effects of Conventional vs. Conservation Tillage Systems on Population Dynamics of Boll Weevil (Coleoptera: Curculionidae) in Dryland Cotton

    Get PDF
    Studies were conducted during 2000-2001 to determine the effects of a conservation tillage system in dryland cotton on soil surface temperatures, soil moisture, plant canopy structure, light interception, timing of fruit set, and how these factors affect crop yield and boll weevil, Anthonomus grandis grandis Boheman, populations compared with a conventional moldboard tillage system. Soil moisture at the 10-40 cm depth was 1.6-1.9-fold higher in the conservation tillage treatment than in the conventional tillage treatment throughout the first 90 days of crop growth due to the decreased evaporation from crop residue mulch. The conventional tillage cotton treatment had a greater water stress, causing plants to shed squares and bolls. Cotton plants in the conventional tillage treatment allocated more resources into vegetative growth while the conservation tillage cotton responded by fruiting at a higher rate. At 110 days after planting the conservation tillage cotton had an average height of 42.4 cm per plant versus 63.0 cm in conventional tillage, and the number of leaves per plant was 32.4 versus 51.7, while fruit numbers were 13.0 versus 7.1, respectively. Increased plant height and number of leaves in the conventional tillage provided significantly more light interception and shading of the soil surface. In the conservation tillage cotton, 60.2% of the incoming sunlight reached the soil surface, while the conventional tillage had only 36.2%. Soil temperatures between the rows in conservation tillage cotton were 8-11º C higher than in conventional tillage and significantly influenced boll weevil mortality in infested squares shed from plants. The number of boll weevils per plant was 2.3 to 3.4-fold higher in the conventional tillage compared with the conservation tillage. Trap counts of weevil populations followed a similar trend with 1.6 to 2.8-fold more weevils in the conventional tillage compared to conservation tillage. The mortality of boll weevils in fallen, naturally infested squares, and in cohorts of laboratory-infested squares collected from the middle of the rows was 1.5-1.8-fold higher in the conservation tillage field than in the conventional. Percent punctured squares by boll weevils during the growing season averaged 2.1-fold higher in conventional than in conservation tillage fields
    corecore