345 research outputs found

    Motion of pole-dipole and quadrupole particles in non-minimally coupled theories of gravity

    Full text link
    We study theories of gravity with non-minimal coupling between polarized media with pole-dipole and quadrupole moments and an arbitrary function of the space-time curvature scalar RR and the squares of the Ricci and Riemann curvature tensors. We obtain the general form of the equation of motion and show that an induced quadrupole moment emerges as a result of the curvature tensor dependence of the function coupled to the matter. We derive the explicit forms of the equations of motion in the particular cases of coupling to a function of the curvature scalar alone, coupling to an arbitrary function of the square of the Riemann curvature tensor, and coupling to an arbitrary function of the Gauss-Bonnet invariant. We show that in these cases the extra force resulting from the non-minimal coupling can be expressed in terms of the induced moments

    Multipolar Expansions for the Relativistic N-Body Problem in the Rest-Frame Instant Form

    Get PDF
    Dixon's multipoles for a system of N relativistic positive-energy scalar particles are evaluated in the rest-frame instant form of dynamics. The Wigner hyperplanes (intrinsic rest frame of the isolated system) turn out to be the natural framework for describing multipole kinematics. In particular, concepts like the {\it barycentric tensor of inertia} can be defined in special relativity only by means of the quadrupole moments of the isolated system.Comment: 46 pages, revtex fil

    Exotic Hill Problem: Hall motions and symmetries

    Full text link
    Our previous study of a system of bodies assumed to move along almost circular orbits around a central mass, approximately described by Hill's equations, is extended to "exotic" [alias non-commutative] particles. For a certain critical value of the angular velocity, the only allowed motions follow the Hall law. Translations and generalized boosts span two independent Heisenberg algebras with different central parameters. In the critical case, the symmetry reduces to a single Heisenberg algebra.Comment: RevTeX, 4 pages, 4 figure

    On the stability of Hamiltonian relative equilibria with non-trivial isotropy

    Full text link
    We consider Hamiltonian systems with symmetry, and relative equilibria with isotropy subgroup of positive dimension. The stability of such relative equilibria has been studied by Ortega and Ratiu and by Lerman and Singer. In both papers the authors give sufficient conditions for stability which require first determining a splitting of a subspace of the Lie algebra of the symmetry group, with different splittings giving different criteria. In this note we remove this splitting construction and so provide a more general and more easily computed criterion for stability. The result is also extended to apply to systems whose momentum map is not coadjoint equivariant

    Hidden symmetries in a gauge covariant approach, Hamiltonian reduction and oxidation

    Full text link
    Hidden symmetries in a covariant Hamiltonian formulation are investigated involving gauge covariant equations of motion. The special role of the Stackel-Killing tensors is pointed out. A reduction procedure is used to reduce the original phase space to another one in which the symmetries are divided out. The reverse of the reduction procedure is done by stages performing the unfolding of the gauge transformation followed by the Eisenhart lift in connection with scalar potentials.Comment: 15 pages; based on a talk at QTS-7 Conference, Prague, August 7-13, 201

    Transverse Shifts in Paraxial Spinoptics

    Full text link
    The paraxial approximation of a classical spinning photon is shown to yield an "exotic particle" in the plane transverse to the propagation. The previously proposed and observed position shift between media with different refractive indices is modified when the interface is curved, and there also appears a novel, momentum [direction] shift. The laws of thin lenses are modified accordingly.Comment: 3 pages, no figures. One detail clarified, some misprints corrected and references adde

    Quantized Nambu-Poisson Manifolds and n-Lie Algebras

    Full text link
    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras, as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of R^n by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.Comment: 43 pages, minor corrections, presentation improved, references adde

    Mathisson's helical motions for a spinning particle --- are they unphysical?

    Get PDF
    It has been asserted in the literature that Mathisson's helical motions are unphysical, with the argument that their radius can be arbitrarily large. We revisit Mathisson's helical motions of a free spinning particle, and observe that such statement is unfounded. Their radius is finite and confined to the disk of centroids. We argue that the helical motions are perfectly valid and physically equivalent descriptions of the motion of a spinning body, the difference between them being the choice of the representative point of the particle, thus a gauge choice. We discuss the kinematical explanation of these motions, and we dynamically interpret them through the concept of hidden momentum. We also show that, contrary to previous claims, the frequency of the helical motions coincides, even in the relativistic limit, with the zitterbewegung frequency of the Dirac equation for the electron

    Twisted geometries: A geometric parametrisation of SU(2) phase space

    Full text link
    A cornerstone of the loop quantum gravity program is the fact that the phase space of general relativity on a fixed graph can be described by a product of SU(2) cotangent bundles per edge. In this paper we show how to parametrize this phase space in terms of quantities describing the intrinsic and extrinsic geometry of the triangulation dual to the graph. These are defined by the assignment to each triangle of its area, the two unit normals as seen from the two polyhedra sharing it, and an additional angle related to the extrinsic curvature. These quantities do not define a Regge geometry, since they include extrinsic data, but a looser notion of discrete geometry which is twisted in the sense that it is locally well-defined, but the local patches lack a consistent gluing among each other. We give the Poisson brackets among the new variables, and exhibit a symplectomorphism which maps them into the Poisson brackets of loop gravity. The new parametrization has the advantage of a simple description of the gauge-invariant reduced phase space, which is given by a product of phase spaces associated to edges and vertices, and it also provides an abelianisation of the SU(2) connection. The results are relevant for the construction of coherent states, and as a byproduct, contribute to clarify the connection between loop gravity and its subset corresponding to Regge geometries.Comment: 28 pages. v2 and v3 minor change

    Finite-Difference Equations in Relativistic Quantum Mechanics

    Get PDF
    Relativistic Quantum Mechanics suffers from structural problems which are traced back to the lack of a position operator x^\hat{x}, satisfying [x^,p^]=i1^[\hat{x},\hat{p}]=i\hbar\hat{1} with the ordinary momentum operator p^\hat{p}, in the basic symmetry group -- the Poincar\'e group. In this paper we provide a finite-dimensional extension of the Poincar\'e group containing only one more (in 1+1D) generator π^\hat{\pi}, satisfying the commutation relation [k^,π^]=i1^[\hat{k},\hat{\pi}]=i\hbar\hat{1} with the ordinary boost generator k^\hat{k}. The unitary irreducible representations are calculated and the carrier space proves to be the set of Shapiro's wave functions. The generalized equations of motion constitute a simple example of exactly solvable finite-difference set of equations associated with infinite-order polarization equations.Comment: 10 LaTeX pages, final version, enlarged (2 more pages
    corecore