32,046 research outputs found

    Constraining spatial variations of the fine-structure constant in symmetron models

    Get PDF
    We introduce a methodology to test models with spatial variations of the fine-structure constant α\alpha, based on the calculation of the angular power spectrum of these measurements. This methodology enables comparisons of observations and theoretical models through their predictions on the statistics of the α\alpha variation. Here we apply it to the case of symmetron models. We find no indications of deviations from the standard behavior, with current data providing an upper limit to the strength of the symmetron coupling to gravity (logβ2<0.9\log{\beta^2}<-0.9) when this is the only free parameter, and not able to constrain the model when also the symmetry breaking scale factor aSSBa_{SSB} is free to vary.Comment: Phys. Lett. B (in press

    K X-Ray Energies and Transition Probabilities for He-, Li- and Be-like Praseodymium ions

    Full text link
    Theoretical transition energies and probabilities for He-, Li- and Be-like Praseodymium ions are calculated in the framework of the multi-configuration Dirac-Fock method (MCDF), including QED corrections. These calculated values are compared to recent experimental data obtained in the Livermore SuperEBIT electron beam ion trap facility

    Cosmological and astrophysical constraints on tachyon dark energy models

    Full text link
    Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant α\alpha. Here we take advantage of recent observational progress and use a combination of background cosmological observations of Type Ia supernovas and astrophysical and local measurements of α\alpha to improve constraints on this class of models. We show that the constraints on α\alpha imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state (1+w0)<2.4×107(1+w_0)<2.4\times10^{-7} at the 99.7%99.7\% confidence level. Therefore current and forthcoming standard background cosmology observational probes can't distinguish this class of models from a cosmological constant, while detections of α\alpha variations could possibly do so since they would have a characteristic redshift dependence.Comment: 8 pages, 2 figures. arXiv admin note: text overlap with arXiv:1601.0295

    Vorton Formation

    Get PDF
    In this paper we present the first analytic model for vorton formation. We start by deriving the microscopic string equations of motion in Witten's superconducting model, and show that in the relevant chiral limit these coincide with the ones obtained from the supersonic elastic models of Carter and Peter. We then numerically study a number of solutions of these equations of motion and thereby suggest criteria for deciding whether a given superconducting loop configuration can form a vorton. Finally, using a recently developed model for the evolution of currents in superconducting strings we conjecture, by comparison with these criteria, that string networks formed at the GUT phase transition should produce no vortons. On the other hand, a network formed at the electroweak scale can produce vortons accounting for up to 6% of the critical density. Some consequences of our results are discussed.Comment: 41 pages; color figures 3-6 not included, but available from authors. To appear in Phys. Rev.

    Evolution of Cosmic Necklaces and Lattices

    Full text link
    Previously developed analytic models for the evolution of cosmic string and monopole networks are applied to networks of monopoles attached to two or more strings; the former case is usually known as cosmic necklaces. These networks are a common consequence of models with extra dimensions such as brane inflation. Our quantitative analysis agrees with (and extends) previous simpler estimates, but we will also highlight some differences. A linear scaling solution is usually the attractor solution for both the radiation and matter-dominated epochs, but other scaling laws can also exist, depending on the universe's expansion rate and the network's energy loss mechanisms.Comment: 4 page

    Current and Future White Dwarf Mass-radius Constraints on Varying Fundamental Couplings and Unification Scenarios

    Full text link
    We discuss the feasibility of using astrophysical observations of white dwarfs as probes of fundamental physics. We quantify the effects of varying fundamental couplings on the white dwarf mass-radius relation in a broad class of unification scenarios, both for the simple case of a polytropic stellar structure model and for more general models. Independent measurements of the mass and radius, together with direct spectroscopic measurements of the fine-structure constant in white dwarf atmospheres lead to constraints on combinations of the two phenomenological parameters describing the underlying unification scenario (one of which is related to the strong sector of the theory while the other is related to the electroweak sector). While currently available measurements do not yet provide stringent constraints, we show that forthcoming improvements, expected for example from the Gaia satellite, can break parameter degeneracies and lead to constraints that ideally complement those obtained from local laboratory tests using atomic clocks.Comment: 11 pages, 8 figure
    corecore