30 research outputs found
Species traits interact with stress level to determine intraspecific facilitation and competition
Questions Flooding and drought stress are expected to increase significantly across the world and plant responses to these abiotic changes may be mediated by plantâplant interactions. Stress tolerance and recovery often require a biomass investment that may have consequences for these plantâplant interactions. Therefore, we questioned whether phenotypic plasticity in response to flooding and drought affected the balance between competition and facilitation for species with specific adaptations to drought or flooding. Location Utrecht University. Methods Stem elongation, root porosity, root:shoot ratio and biomass production were measured for six species during drought, well-drained and submerged conditions when grown alone or together with conspecifics. We quantified competition and facilitation as the âneighbour intensity effectâ directly after the 10-day treatment and again after a seven-day recovery period in well-drained conditions. Results Water stress, planting density and species identity interactively affected standardized stem elongation in a way that could lead to facilitation during submergence for species that preferably grow in wet soils. Root porosity was affected by the interaction between neighbour presence and time-step. Plant traits were only slightly affected during drought. The calculated neighbour interaction effect indicated facilitation for wetland species during submerged conditions and, after a period to recover from flooding, for species that prefer dry habitats. Conclusions Our results imply that changing plantâplant interactions in response to submergence and to a lesser extent to drought should be considered when predicting vegetation dynamics due to changing hydroclimatic regimes. Moreover, facilitation during a recovery period may enable species maladapted to flooding to persist
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0â5 and 5â15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (â0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0â5 and 5â15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the worldâs major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Reading tea leaves worldwide: decoupled drivers of initial litter decomposition massâloss rate and stabilization
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent largeâscale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial massâloss rates and stabilization factors of plantâderived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easyâtoâdegrade components accumulate during earlyâstage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial massâloss rates and stabilization, notably in colder locations. Using TBI improved massâloss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during earlyâstage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Legacy effects of altered flooding regimes on decomposition in a boreal floodplain
Since long-term experiments are scarce, we have poor understanding of how changed flooding regimes affect processes such as litter decomposition. We simulated short- and long-term changed flooding regimes by transplanting turfs between low (frequently flooded) and high (in-frequently flooded) elevations on the river bank in 2000 (old turfs) and 2014 (young turfs). We tested how incubation elevation, turf origin and turf age affected decomposition of standard litter (tea) and four types of local litter. For tea, we found that the initial decomposition rate (k) and stabilization (S) of labile material during the second decomposition phase were highest at high incubation elevation. We found intermediate values for k and S in young transplanted turfs, but turf origin was not important in old turfs. Local litter mass loss was generally highest at high incubation elevations, and effects of turf origin and turf age were litter-specific. We conclude that incubation elevation, i.e., the current flooding regime, was the most important factor driving decomposition. Soil origin (flooding history) affected decomposition of tea only in young turfs. Therefore, we expect that changes in flooding regimes predominantly affect decomposition directly, while indirect legacy effects are weaker and litter- or site-specific
Data from: Windows of opportunity for germination of riparian species after restoring water level fluctuations: a field experiment with controlled seed banks
1. Restoration activities aiming at increasing vegetation diversity often try to stimulate both dispersal and germination. In wetlands, dispersal and germination are coupled as water and water level fluctuations (WLF) simultaneously influence seed transport and germination conditions (soil moisture). Water regime shifts have been shown to affect vegetation composition. However, the interactions between WLF, dispersal and subsequent germination as drivers of such changes are still poorly understood, especially within the complexity of a field situation. 2. We tested the effect of soil moisture on ten riparian species in the greenhouse and sowed these species on 135 field locations in nine wetlands with recently restored WLF. We used quantile regressions to test the effects of WLF on the window of opportunity for germination from sown seeds and other seeds naturally dispersed to our plots, as well as on community diversity. 3. Soil moisture significantly affected germination both in the greenhouse and in the field. In the complexity of a field situation, a flooding depth just below the soil level, an intermediate flooding duration and a high flooding frequency provided the best opportunities for maximal germination. This was because these conditions enhanced germination from the seed bank as well as increasing germination from dispersed seeds. Seedling diversity showed identical patterns. 4. Other known (i.e., light conditions) and unknown factors played a role as we found low and variable germination, even under optimal conditions. We found evidence that WLF can affect vegetation zonation as flooded seedling communities contained more species with high moisture affinity. 5. Synthesis and applications. Water level fluctuations provide clear windows of opportunity for germination both from the seed bank and from dispersed seeds. Water regime changes are therefore likely to strongly affect recruitment opportunities and subsequent community assembly in riparian ecosystems, for instance through climate change or management. Water level fluctuations can be used as management tool to stimulate plant recruitment and seedling diversity in riparian wetlands
field and greenhouse data on germination of 10 wetland species
The datafile consists of two tabs, one containing germination measurements in the field and one containing germination data of the same species under greenhouse condition