4,411 research outputs found
The Two Phases of Galaxy Formation
Cosmological simulations of galaxy formation appear to show a two-phase
character with a rapid early phase at z>2 during which in-situ stars are formed
within the galaxy from infalling cold gas followed by an extended phase since
z<3 during which ex-situ stars are primarily accreted. In the latter phase
massive systems grow considerably in mass and radius by accretion of smaller
satellite stellar systems formed at quite early times (z>3) outside of the
virial radius of the forming central galaxy. These tentative conclusions are
obtained from high resolution re-simulations of 39 individual galaxies in a
full cosmological context with present-day virial halo masses ranging from 7e11
M_sun h^-1 < M_vir < 2.7e13 M_sun h^-1 and central galaxy masses between 4.5e10
M_sun h^-1 < M_* < 3.6e11 M_sun h^-1. The simulations include the effects of a
uniform UV background, radiative cooling, star formation and energetic feedback
from SNII. The importance of stellar accretion increases with galaxy mass and
towards lower redshift. In our simulations lower mass galaxies (M_* > 1.7e11 M_sun h^-1) assembly is dominated by accretion and
merging with about 80 per cent of the stars added by the present-day. In
general the simulated galaxies approximately double their mass since z=1. For
massive systems this mass growth is not accompanied by significant star
formation. The majority of the in-situ created stars is formed at z>2,
primarily out of cold gas flows. We recover the observational result of
archaeological downsizing, where the most massive galaxies harbor the oldest
stars. We find that this is not in contradiction with hierarchical structure
formation. Most stars in the massive galaxies are formed early on in smaller
structures, the galaxies themselves are assembled late.Comment: 13 pages, 13 figures, accepted for publication in Ap
Functional correlates of positional and gender-specific renal asymmetry in drosophila
Accordingly, the physical asymmetry of the tubules in the body cavity is directly adaptive. Now that the detailed machinery underlying internal asymmetry is starting to be delineated, our work invites the investigation, not just of tissues in isolation, but in the context of their unique physical locations and milieux
On the domain wall partition functions of level-1 affine so(n) vertex models
We derive determinant expressions for domain wall partition functions of
level-1 affine so(n) vertex models, n >= 4, at discrete values of the crossing
parameter lambda = m pi / 2(n-3), m in Z, in the critical regime.Comment: 14 pages, 13 figures included in latex fil
Latent Space Model for Multi-Modal Social Data
With the emergence of social networking services, researchers enjoy the
increasing availability of large-scale heterogenous datasets capturing online
user interactions and behaviors. Traditional analysis of techno-social systems
data has focused mainly on describing either the dynamics of social
interactions, or the attributes and behaviors of the users. However,
overwhelming empirical evidence suggests that the two dimensions affect one
another, and therefore they should be jointly modeled and analyzed in a
multi-modal framework. The benefits of such an approach include the ability to
build better predictive models, leveraging social network information as well
as user behavioral signals. To this purpose, here we propose the Constrained
Latent Space Model (CLSM), a generalized framework that combines Mixed
Membership Stochastic Blockmodels (MMSB) and Latent Dirichlet Allocation (LDA)
incorporating a constraint that forces the latent space to concurrently
describe the multiple data modalities. We derive an efficient inference
algorithm based on Variational Expectation Maximization that has a
computational cost linear in the size of the network, thus making it feasible
to analyze massive social datasets. We validate the proposed framework on two
problems: prediction of social interactions from user attributes and behaviors,
and behavior prediction exploiting network information. We perform experiments
with a variety of multi-modal social systems, spanning location-based social
networks (Gowalla), social media services (Instagram, Orkut), e-commerce and
review sites (Amazon, Ciao), and finally citation networks (Cora). The results
indicate significant improvement in prediction accuracy over state of the art
methods, and demonstrate the flexibility of the proposed approach for
addressing a variety of different learning problems commonly occurring with
multi-modal social data.Comment: 12 pages, 7 figures, 2 table
Cascades: A view from Audience
Cascades on online networks have been a popular subject of study in the past
decade, and there is a considerable literature on phenomena such as diffusion
mechanisms, virality, cascade prediction, and peer network effects. However, a
basic question has received comparatively little attention: how desirable are
cascades on a social media platform from the point of view of users? While
versions of this question have been considered from the perspective of the
producers of cascades, any answer to this question must also take into account
the effect of cascades on their audience. In this work, we seek to fill this
gap by providing a consumer perspective of cascade.
Users on online networks play the dual role of producers and consumers.
First, we perform an empirical study of the interaction of Twitter users with
retweet cascades. We measure how often users observe retweets in their home
timeline, and observe a phenomenon that we term the "Impressions Paradox": the
share of impressions for cascades of size k decays much slower than frequency
of cascades of size k. Thus, the audience for cascades can be quite large even
for rare large cascades. We also measure audience engagement with retweet
cascades in comparison to non-retweeted content. Our results show that cascades
often rival or exceed organic content in engagement received per impression.
This result is perhaps surprising in that consumers didn't opt in to see tweets
from these authors. Furthermore, although cascading content is widely popular,
one would expect it to eventually reach parts of the audience that may not be
interested in the content. Motivated by our findings, we posit a theoretical
model that focuses on the effect of cascades on the audience. Our results on
this model highlight the balance between retweeting as a high-quality content
selection mechanism and the role of network users in filtering irrelevant
content
Recruitment Facilitation and Spatial Pattern Formation in Soft-Bottom Mussel Beds
Mussels (Mytilus edulis) build massive, spatially complex, biogenic structures that alter the biotic and abiotic environment and provide a variety of ecosystem services. Unlike rocky shores, where mussels can attach to the primary substrate, soft sediments are unsuitable for mussel attachment. We used a simple lattice model, field sampling, and field and laboratory experiments to examine facilitation of recruitment (i.e., preferential larval, juvenile, and adult attachment to mussel biogenic structure) and its role in the development of power-law spatial patterns observed in Maine, USA, soft-bottom mussel beds. The model demonstrated that recruitment facilitation produces power-law spatial structure similar to that in natural beds. Field results provided strong evidence for facilitation of recruitment to other mussels—they do not simply map onto a hard-substrate template of gravel and shell hash. Mussels were spatially decoupled from non-mussel hard substrates to which they can potentially recruit. Recent larval recruits were positively correlated with adult mussels, but not with other hard substrates. Mussels made byssal thread attachments to other mussels in much higher proportions than to other hard substrates. In a field experiment, mussel recruitment was highest to live mussels, followed by mussel shell hash and gravel, with almost no recruitment to muddy sand. In a laboratory experiment, evenly dispersed mussels rapidly self-organized into power-law clusters similar to those observed in nature. Collectively, the results indicate that facilitation of recruitment to existing mussels plays a major role in soft-bottom spatial pattern development. The interaction between large-scale resource availability (hard substrate) and local-scale recruitment facilitation may be responsible for creating complex power-law spatial structure in soft-bottom mussel beds
The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules
Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border
Game saturation of intersecting families
We consider the following combinatorial game: two players, Fast and Slow,
claim -element subsets of alternately, one at each turn,
such that both players are allowed to pick sets that intersect all previously
claimed subsets. The game ends when there does not exist any unclaimed
-subset that meets all already claimed sets. The score of the game is the
number of sets claimed by the two players, the aim of Fast is to keep the score
as low as possible, while the aim of Slow is to postpone the game's end as long
as possible. The game saturation number is the score of the game when both
players play according to an optimal strategy. To be precise we have to
distinguish two cases depending on which player takes the first move. Let
and denote the score of
the saturation game when both players play according to an optimal strategy and
the game starts with Fast's or Slow's move, respectively. We prove that
holds
Correlations, spectral gap, and entanglement in harmonic quantum systems on generic lattices
We investigate the relationship between the gap between the energy of the
ground state and the first excited state and the decay of correlation functions
in harmonic lattice systems. We prove that in gapped systems, the exponential
decay of correlations follows for both the ground state and thermal states.
Considering the converse direction, we show that an energy gap can follow from
algebraic decay and always does for exponential decay. The underlying lattices
are described as general graphs of not necessarily integer dimension, including
translationally invariant instances of cubic lattices as special cases. Any
local quadratic couplings in position and momentum coordinates are allowed for,
leading to quasi-free (Gaussian) ground states. We make use of methods of
deriving bounds to matrix functions of banded matrices corresponding to local
interactions on general graphs. Finally, we give an explicit entanglement-area
relationship in terms of the energy gap for arbitrary, not necessarily
contiguous regions on lattices characterized by general graphs.Comment: 26 pages, LaTeX, published version (figure added
Development and initial testing of the person-centred health care for older adults survey.
Background: Health services are encouraged to adopt a strong person-centered approach to the provision of care and services for older people. The aim of this project was to establish a user-friendly, psychometrically valid, and reliable measure of healthcare staff’s practice, attitudes, and beliefs regarding person-centered healthcare. Methods: Item reduction (factor analysis) of a previously developed “benchmarking person-centred care” survey, followed by psychometric evaluations of the internal consistency reliability and construct validity, was conducted. The initial survey was completed by 1,428 healthcare staff from 17 health services across Victoria, Australia. Results: After removing 17 items from the previously developed “benchmarking person-centred care” survey, the revised 31-item survey (Person-Centred Health Care for Older Adults Survey) attained eight factors that explain 62.7% of the total variance with a Cronbach’s α coefficient of 0.91, indicating excellent internal consistency. Expert consultation confirmed that the revised survey had content validity. Conclusions: The results indicated that the Person-Centred Health Care for Older Adults Survey is a user-friendly, psychometrically valid, and reliable measure of staff perceptions of person-centered healthcare for use in hospital settings
- …