229 research outputs found
Spectral function of the spiral spin state in the trestle and ladder Hubbard model
Eder and Ohta have found a violation of the Luttinger rule in the spectral
function for the t-t'-J model, which was interpreted as a possible breakdown of
the Tomonaga-Luttinger(TL) description in models where electrons can pass each
other. Here we have computed the spin correlation along with the spectral
function for the one-dimensional t-t' Hubbard model and two-leg Hubbard ladder.
By varying the Hubbard U we have identified that such a phenomenon is in fact a
spinless-fermion-like behavior of holes moving in a spiral spin configuration
that has a spin correlation length of the system size.Comment: 3 pages, RevTex, 8 figures in Postscript, to be published in Phys.
Rev. B (rapid communication
Electronic structure and optical properties of TaC from the first principles calculation
Abstract.: The electronic and optical properties of tantalum carbide TaC have been calculated using the full-potential linearized augmented-plane-wave method within the local density approximation scheme for the exchange-correlation potential. We find that the optical spectra can be extremely sensitive to the Brillouin zone sampling. The influence of relativistic effects on the dielectric function is investigated. It is shown that the scalar-relativistic correction is much more important than spin-orbit coupling. Our results are found to be in good agreement with the available experimental data. The determinant role of a band structure computation with respect to the analysis of optical properties is discusse
Frustrated Hubbard ladders and superconductivity in -BEDT-TTF organic compounds
Half-filled two-leg Hubbard ladders have spin-gapped short-range
antiferromagnetic correlations while three-leg ladders have power law
antoferromagnetic correlations, and both systems have d_{x^2-y^2}-power law
pairing correlations when they are doped. Thus these ladders exhibit some of
the phenomenology seen in the layered cuprates. Here we report results for
half-filled frustrated Hubbard ladders, based upon ladder segments taken from a
tight-binding model of kappa-BEDT-TTF. Although these ladders are half-filled,
varying the degree of frustration can drive them across an insulator-metal
transition. We suggest that the spin, charge and pairing correlations of these
frustrated ladders near the insulator-metal transition provide support for the
notion that kappa-BEDT-TTF is a strongly correlated superconductor
Phase diagram of the half-filled Hubbard chain with next-nearest-neighbor hopping
We investigate the ground-state phase diagram of the half-filled
one-dimensional Hubbard model with next-nearest-neighbor hopping using the
Density-Matrix Renormalization Group technique as well as an unrestricted
Hartree-Fock approximation. We find commensurate and incommensurate disordered
magnetic insulating phases and a spin-gapped metallic phase in addition to the
one-dimensional Heisenberg phase. At large on-site Coulomb repulsion , we
make contact with the phase diagram of the frustrated Heisenberg chain, which
has spin-gapped phases for sufficiently large frustration. For weak ,
sufficiently large next-nearest-neighbor hopping leads to a band
structure with four Fermi points rather than two, producing a spin-gapped
metallic phase. As is increased in this regime, the system undergoes a
Mott-Hubbard transition to a frustrated antiferromagnetic insulator
An electron correlation originated negative magnetoresistance in a system having a partly flat band
Inspired from an experimentally examined organic conductor, a novel mechanism
for negative magnetoresistance is proposed for repulsively interacting
electrons on a lattice whose band dispersion contains a flat portion (a flat
bottom below a dispersive part here). When the Fermi level lies in the flat
part, the electron correlation should cause ferromagnetic spin fluctuations to
develop with an enhanced susceptibility. A relatively small magnetic field will
then shift the majority-spin Fermi level to the dispersive part, resulting in a
negative magnetoresistance. We have actually confirmed the idea by calculating
the conductivity in magnetic fields, with the fluctuation exchange
approximation, for the repulsive Hubbard model on a square lattice having a
large second nearest-neighbor hopping.Comment: RevTex, 5 figures in Postscript, to be published in Phys. Rev.
Electronic States and Superconducting Transition Temperature based on the Tomonaga-Luttinger liquid in PrBaCuO
An NQR experiment revealed superconductivity of
PrBaCuO (Pr247) to be realized on CuO double chain
layers and suggests possibility of novel one-dimensional(1D) superconductivity.
To clarify the nature of the 1D superconductivity, we calculate the band
dispersions of Pr247 by using the generalized gradient approximation(GGA). It
indicates that Fermi surface of CuO double chains is well described to the
electronic structure of a quasi-1D system.
Assuming the zigzag Hubbard chain model to be an effective model of the
system, we derive tight binding parameters of the model from a fit to the
result of GGA. Based on the Tomonaga-Luttinger liquid theory, we estimate
transition temperature () of the quasi-1D zigzag Hubbard model from the
calculated value of the Luttinger liquid parameter . The result of
is consistent with that of experiments in Pr247 and it suggests that the
mechanism of the superconductivity is well understood within the concept of the
Tomonaga-Luttinger liquid.Comment: 4 pages, 5 figure
Jahn–Teller instability in cationic boron and carbon buckyballs B<sub>80</sub><sup>+</sup> and C<sub>60</sub><sup>+</sup>: a comparative study
This paper investigates the Jahn–Teller effect in the icosahedral cation B80+ and compares the descent in symmetry with that in C60+. For both cations the icosahedral ground state is a 2Hu state, which exhibits a H [multiply sign in circle] (g ⊕ 2h) Jahn–Teller instability. A detailed construction of the potential energy surface of B80+ using different DFT methods including B3LYP/6-31G(d), VWN/6-31G(d), PBE/TZP and PBE/6-31G(d) shows that, contrary to C60+, which prefers D5d symmetry, the ground state of B80+ adopts S6 point group symmetry. A D3d structure is identified as a saddle point among the S6 minima of B80+. The distortion of D3d to S6 in B80+ is attributed to a superposition of Jahn–Teller and pseudo-Jahn–Teller effects. Imaginary modes, transforming as the gg representation, which are present in neutral icosahedral B80, form the dominant symmetry breaking active modes. The pronounced difference between the JT effects in the boron and carbon buckyball cations is due to the plasticity of the boron caps. The calculated Jahn–Teller stabilization of B80+ is nearly 1549 cm−1 (PBE/TZP), which exceeds the stabilization of 596 cm−1 computed for C60+ at the same level
Effect of the W-term for a t-U-W Hubbard ladder
Antiferromagnetic and d_{x2-y2}-pairing correlations appear delicately
balanced in the 2D Hubbard model. Whether doping can tip the balance to pairing
is unclear and models with additional interaction terms have been studied. In
one of these, the square of a local hopping kinetic energy H_W was found to
favor pairing. However, such a term can be separated into a number of simpler
processes and one would like to know which of these terms are responsible for
enhancing the pairing. Here we analyze these processes for a 2-leg Hubbard
ladder
Relationship between spiral and ferromagnetic states in the Hubbard model in the thermodynamic limit
We explore how the spiral spin(SP) state, a spin singlet known to accompany
fully-polarized ferromagnetic (F) states in the Hubbard model, is related with
the F state in the thermodynamic limit using the density matrix renormalization
group and exact diagonalization. We first obtain an indication that when the F
state is the ground state the SP state is also eligible as the ground state in
that limit. We then follow the general argument by Koma and Tasaki [J. Stat.
Phys. {\bf 76}, 745 (1994)] to find that: (i) The SP state possesses a kind of
order parameter. (ii) Although the SP state does not break the SU(2) symmetry
in finite systems, it does so in the thermodynamic limit by making a linear
combination with other states that are degenerate in that limit. We also
calculate the one-particle spectral function and dynamical spin and charge
susceptibilities for various 1D finite-size lattices. We find that the
excitation spectrum of the SP state and the F state is almost identical. Our
present results suggest that the SP and the F states are equivalent in the
thermodynamic limit. These properties may be exploited to determine the
magnetic phase diagram from finite-size studies.Comment: 17 figures, to be published in Phys. Rev.
Interaction induced collapse of a section of the Fermi sea in in the zig-zag Hubbard ladder
Using the next-nearest neighbor (zig-zag) Hubbard chain as an one
dimemensional model, we investigate the influence of interactions on the
position of the Fermi wavevectors with the density-matrix renormalization-group
technique (DMRG). For suitable choices of the hopping parameters we observe
that electron-electron correlations induce very different renormalizations for
the two different Fermi wavevectors, which ultimately lead to a complete
destruction of one section of the Fermi sea in a quantum critical point
- …