17 research outputs found

    A study of Traveling Ionospheric Disturbances and Atmospheric Gravity Waves using EISCAT Svalbard Radar IPY-data

    Get PDF
    We present a statistical study of Traveling Ionospheric Disturbances (TIDs) as observed by the EISCAT Svalbard Radar (ESR) during the continuous IPY-run (March 2007–February 2008) with field-aligned measurements. We have developed a semi-automatic routine for searching and extracting Atmospheric Gravity Wave (AGW) activity. The collected data shows that AGW-TID signatures are common in the high-latitude ionosphere especially in the field-aligned ion velocity data (244 cases of AGW-TID signatures in daily records), but they can be observed also in electron density (26 cases), electron temperature (12 cases) and ion temperature (26 cases). During the IPY campaign (in solar minimum conditions) AGW-TID events appear more frequently during summer months than during the winter months. It remains still as a topic for future studies whether the observed seasonal variation is natural or caused by seasonal variation in the performance of the observational method that we use (AGW-TID signature may be more pronounced in a dense ionosphere). In our AGW-TID dataset the distribution of the oscillation periods has two peaks, one around 0.5–0.7 h and the other around 1.1–1.3 h. The diurnal occurrence rate has a deep minimum in the region of magnetic midnight, which might be partly explained by irregular auroral activity obscuring the TID signatures from our detection routines. As both the period and horizontal phase speed estimates (as derived from the classical AGW dispersion relation) show values typical both for large scale TIDs and mesoscale TIDs it is difficult to distinguish whether the generator for high-latitude AGW-TIDs resides typically in the troposphere or in the near-Earth space. The results of our statistical analysis give anyway some valuable reference information for the future efforts to learn more about the dominating TID source mechanisms in polar cap conditions, and to improve AGW simulations

    Data intensive scientific analysis with grid computing

    Get PDF
    At the end of September 2009, a new Italian GPS receiver for radio occultation was launched from the Satish Dhawan Space Center (Sriharikota, India) on the Indian Remote Sensing OCEANSAT-2 satellite. The Italian Space Agency has established a set of Italian universities and research centers to implement the overall processing radio occultation chain. After a brief description of the adopted algorithms, which can be used to characterize the temperature, pressure and humidity, the contribution will focus on a method for automatic processing these data, based on the use of a distributed architecture. This paper aims at being a possible application of grid computing for scientific research

    SUNSTORM 1/X-ray Flux Monitor for CubeSats (XFM-CS) : Instrument characterization and first results

    Get PDF
    SUNSTORM 1 CubeSat was launched to Sun-synchronous low Earth orbit on August 17 2021. The primary purpose of the mission is an in-orbit demonstration of X-ray Flux Monitor (XFM) instrument. XFM is an innovative solar X-ray spectrometer for measuring and characterizing solar flares, which are known to be linked to a variety of space weather phenomena. XFM represents a next generation of solar X-ray flux monitors. It is based on silicon drift detector technology, which provides several notable performance improvements over its predecessors, which are based on Si PIN detectors. Transversal electric field and lower output capacitance allow operation at much faster pulse processing shaping times, allowing the system to achieve about 10 times higher throughput without saturation while also making it less sensitive to the increase of leakage current due to high temperature and/or radiation damage. Thus, XFM instruments can cover a very wide dynamic range of solar X-ray emission from the most quiescent conditions to the strongest X-class solar flares, while maintaining good spectral resolution (Peer reviewe

    Thermal treatment for radioactive waste minimisation

    Get PDF
    Safe management of radioactive waste is challenging to waste producers and waste management organisations. Deployment of thermal treatment technologies can provide significant improvements: volume reduction, waste passivation, organics destruction, safety demonstration facilitation, etc. The EC-funded THERAMIN project enables an EU-wide strategic review and assessment of the value of thermal treatment technologies applicable to Low and Intermediate Level waste streams (ion exchange media, soft operational waste, sludges, organic waste, and liquids). THERAMIN compiles an EU-wide database of wastes, which could be treated by thermal technologies and documents available thermal technologies. Applicability and benefits of technologies to the identified waste streams will be evaluated through full-scale demonstration tests by project partners. Safety case implications will also be assessed through the study of the disposability of thermally treated waste products. This paper will communicate the strategic aims of the ongoing project and highlight some key findings and results achieved to date

    Probing the high latitude ionosphere from ground-based observations: The state of current knowledge and capabilities during IPY (2007-2009)

    Get PDF
    During the International Polar Year (IPY), one area of great interest is co-coordinated, multi-instrument probing of the ionosphere at high latitudes. This region is important not only for the applications that rely upon our understanding of it, but also because it contains the footprints of processes that have their origin in the interplanetary space. Many different techniques are now available for probing the ionosphere, from radar measurements to the analysis of very low frequency (VLF) wave paths. Combining these methods provides the ability to study the ionosphere from high in the F-region to the bottom of the D-layer. Thus, coupling processes from the magnetosphere and to the neutral atmosphere can be considered. An additional dimension is through comparisons of the response of the two polar ionospheres to similar (or the same) geomagnetic activity. With more instruments available at the South Pole inter-hemispheric, studies have become easier to accomplish such that a fuller picture of the global response to Sun-Earth coupling can be painted. This paper presents a review of the current state of knowledge in ionospheric probing. It cannot provide a comprehensive guide of the work to date due to the scale of the topic. Rather it is intended to give an overview of the techniques and recent results from some of the instruments and facilities that are a part of the IPY cluster 63-Heliosphere Impact on Geospace. In this way it is hoped that the reader will gain a flavor of the recent research performed in this area and the potential for continuing collaboration and capabilities during the IP

    Mitigation of ionospheric effects on GNSS

    Full text link
    The effects of the ionosphere remain one of the main factors which limit the precision and the reliability of many GNSS applications. It is therefore indispensable on the one hand to improve existing mitigation techniques and on the other hand to assess their remaining weaknesses. Mitigation techniques depend on the type of application considered. Therefore, specific mitigation techniques have to be developed. The paper summarizes work performed on this topic in the frame of WP 3.2 “Mitigation techniques” of COST296

    Space weather magnetometer aboard GEO-KOMPSAT-2A

    No full text
    The South Korean meteorological and environmental satellite GEO-KOMPSAT-2A (GK-2A) was launched into geostationary orbit at 128.2∘ East on 4 December 2018. The space weather observation aboard GK-2A is performed by the Korea Space Environment Monitor. It consists of three particle detectors, a charging monitor and a four-sensor Service Oriented Spacecraft Magnetometer (SOSMAG). The magnetometer design aims for avoiding strict magnetic cleanliness requirements for the hosting spacecraft and an automated on-board correction of the dynamic stray fields which are generated by the spacecraft. This is achieved through the use of two science grade fluxgate sensors on an approximately one meter long boom and two additional magnetoresistance sensors mounted within the spacecraft body. This paper describes the instrument design, discusses the ground calibration methods and results, presents the post-launch correction and calibration achievements based on the data which were acquired during the first year in orbit and demonstrates the in-flight performance of SOSMAG with two science cases. The dynamic stray fields from the GK-2A spacecraft, which was built without specific magnetic cleanliness considerations, are reduced up to a maximum factor of 35. The magnitude of the largest remnant field from an active spacecraft disturber is 2.0 nT. Due to a daily shadowing of the SOSMAG boom, sensor intrinsic offset oscillations with a periodicity up to 60 minutes and peak-to-peak values up to 5 nT remain in the corrected data product. The comparison of the cleaned SOSMAG data with the Tsyganenko 2004 magnetic field model and the magnetic field data from the Magnetospheric Multiscale mission demonstrates that the offset error is less than the required 5 nT for all three components and that the drift of the offsets over 10 months is less than 7 nT. Future work will include a further reduction of the remaining artefacts in the final data product with the focus on lessening the temperature driven sensor oscillations with an epoch based identification and correction

    Postmillennium changes in stratospheric temperature consistently resolved by GPS radio occultation and AMSU observations

    No full text
    International audienceTemperature changes in the lower and middle stratosphere during 2001-2016 are evaluated using measurements from GPS Radio Occultation (RO) and Advanced Microwave Sounding Unit (AMSU) aboard the Aqua satellite. After downsampling of GPS-RO profiles according to the AMSU weighting functions, the spatially and seasonally resolved trends from the two data sets are in excellent agreement. The observations indicate that the middle stratosphere has cooled in the time period 2002-2016 at an average rate of –0.14±0.12 to –0.36±0.14 K/decade, while no significant change was found in the lower stratosphere. The meridionally and vertically resolved trends from high-resolution GPS-RO data exhibit a marked inter-hemispheric asymmetry and highlight a distinct boundary between tropospheric and stratospheric temperature change regimes matching the tropical thermal tropopause. The seasonal pattern of trend reveals significant opposite-sign structures at high and low latitudes, providing indication of seasonally varying change in stratospheric circulation
    corecore