17 research outputs found

    Hallazgos neurorradiológicos de la Acidosis Glutárica tipo I

    Get PDF
    Glutaric aciduria type I is a rare disorder of organic acid metabolism caused by deficiency of glutaryl-CoA dehydrogenase, a mitochondrial enzyme. Improper degeneration of amino acids: tryptophan, lysine, and hydroxylysine, results in increased levels of glutaric acid, which typically becomes clinically manifest as an acute dystonic crisis in young children. Accumulation of glutaric acid causes neurotoxicity in the basal ganglia and fronto-temporal cortex which can lead to progressive dystonia, hypotonia, permanently impaired speech and seizures. Because dietary and drug therapy may alter the natural history of the disease, early diagnosis of such patients is critical. We report the magnetic resonance (MR) imaging findings in a 16 year-old girl with this disorder who presented with a chronic dystonic syndrome and previously diagnosed of brain paralysis. MR imaging demonstrated bilateral involvement of the putamina and periventricular white matter, and bilateral temporal atrophy and widened Silvian fissure

    Comparison of conventional and dispersive solid phase extraction clean-up approaches for the simultaneous analysis of tetracyclines and sulfonamides in a variety of fresh vegetables

    Get PDF
    he extensive use of antibiotics in agriculture has led to the occurrence of residual drugs in different vegetables frequently consumed by humans. This could pose a potential threat to human health, not only because of the possible effects after ingestion but also because the transmission of antibiotic-resistant genes could occur. In this work, two accurate sample preparation procedures were developed and validated for the simultaneous analysis of sulfonamides (SAs) and tetracyclines (TCs) in four of the most widely consumed vegetables (lettuce, onion, tomato, and carrot) in Europe. The evaluated protocols were based on QuECHERS for extraction and subsequent clean-up by SPE (solid phase extraction) or dispersive SPE. Parameters affecting both extraction and clean-up were carefully evaluated and selected for accuracy of results and minimal matrix effect. Overall, apparent recoveries were above 70% for most of the target analytes with both analytical procedures, and adequate precision (RSD<30%) was obtained for all the matrices. The procedural limits of quantification (LOQPRO) values for SPE clean-up remained below 4.4 μg kg−1 for TCs in all vegetables except for chlortetracycline (CTC) in lettuce (11.3 μg kg−1) and 3.0 μg kg−1 for SAs, with the exception of sulfadiazine (SDZ) in onion (3.9 μg kg−1) and sulfathiazole (STZ) in carrot (5.0 μg kg−1). Lower LOQPRO values (0.1–3.7 μg kg−1) were obtained, in general, when dSPE clean-up was employed. Both methods were applied to twenty-five market vegetable samples from ecological and conventional agriculture and only sulfamethazine (SMZ) and sulfapyridine (SPD) were detected in lettuce at 1.2 μg kg−1 and 0.5 μg kg−1, respectively.Authors acknowledge financial support from the Elkartek project entitled “Emergencia y diseminación de resistencia a los antibióticos: vínculos entre salud humana, ganadería, alimentación y medioambiente (elkartek 20/88)”, the projects “Evaluación del riesgo de aparición y diseminación de resistencias a antibióticos en productos vegetales frescos y suelos de cultivo de la comunidad autónoma del País Vasco (PA21/05 and PA22/05)” inside the “Research projects targeted to agriculture 2020 program” of the Basque Government (Basque Country, Spain); and the Basque Government through the financial support as consolidated group of the Basque Research System (IT1446-22). I. Vergara-Luis and B. Gonzalez-Gaya are grateful to the University of the Basque Country (UPV/EHU) for their pre-doctoral and post-doctoral fellowships. I. Baciero thanks to the Basque Government for her pre-doctoral fellowship

    Functional bold MRI: advantages of the 3 T vs. the 1.5 T

    Get PDF
    We quantitatively evaluate the benefits of a higher field strength for functional brain MRI (fMRI) based on the blood oxygenation level-dependent contrast. The 3-T fMRI shows a higher sensitivity for the motor and somatosensory stimulation and more specific localization in the grey substance. The 3-T fMRI detects additional areas of activation with the motor paradigm

    Radioterapia estereotáctica

    Get PDF
    La radioterapia con técnica estereotáctica es una modalidad de radioterapia externa que utiliza un sistema de coordenadas tridimensionales independientes del paciente para la localización precisa de la lesión. También se caracteriza porque los haces de irradiación son altamente conformados, precisos y convergentes sobre la lesión que hacen posible la administración de dosis muy altas de radioterapia sin incrementar la irradiación de los órganos o estructuras sanas adyacentes. Cuando el procedimiento se realiza en una sesión de tratamiento se denomina radiocirugía y si se administra en varias sesiones se denomina radioterapia estereotáctica. Se precisa de sistemas de fijación e inmovilización del paciente especiales (guías o marcos estereotácticos) y dispositivos de radioterapia capaces de generar haces muy conformados (acelerador lineal, gammaknife, cyberknife, tomoterapia, ciclotrones). La radioterapia estereotáctica moderna utiliza marcas radioopacas intratumorales o sistemas de imágenes de TAC incluidos en el dispositivo de irradiación, que permiten una precisa localización de las lesiones móviles en cada sesión de tratamiento. Además, los avances tecnológicos hacen posible coordinar los movimientos de la lesión en la respiración con la unidad de radioterapia (gaiting y tracking) de forma que pueden estrecharse al máximo los márgenes y por lo tanto excluir un mayor volumen de tejido sano La radiocirugía está indicada principalmente en lesiones cerebrales benignas o malignas menores de 3-4 centímetros (malformaciones arteriovenosas, neurinomas, meningiomas, metástasis cerebrales) y la radioterapia estereotáctica se administra fundamentalmente en tumores de localización extracraneal que requieran una alta conformación y precisión como cáncer precoz de pulmón inoperable y metástasis hepáticas.Stereotactic radiotherapy is an external radiation modality that uses a system of three dimensional references independent of the patient to achive a precise location of the lesion. Stereotactic radiotherapy generate highly conformal, precisely focused radiation beams to administer very high doses of radiation without increasing the radiation to healthy surrounding organs or structures. When the procedure is carried out in one treatment session the procedure is termed radiosurgery, and when the treatment is administered in several fractions, the radiation modality is termed stereotactic radiotherapy. Special systems of patient immobilization (guides or stereotactic frames) are required together with radiotherapy devices capable of generating conformal beams (lineal accelerator, gammaknife, cyberknife, tomotherapy, cyclotrons). Modern stereotactic radiotherapy techniques employ intratumoural radio-opaque fiducials or CT image systems included in the irradiation device, which make possible a precise location of mobile lesions in each treatment session. Besides, technological advances permit breathing synchronized radiation (gating and tracking) for maximum tightening of margins and excluding a greater volume of healthy tissue. Radiosurgery is mainly indicated in benign or malign cerebral lesions less than 3-4 centimetres (arteriovenous malformations, neurinomas, meningiomas, cerebral metastases) and stereotactic radiotherapy is basically administered in tumours of extracraneal location that require high conformation and precision, such as inoperable early lung cancer and liver metastasis

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Hallazgos neurorradiológicos de la Acidosis Glutárica tipo I

    No full text
    Glutaric aciduria type I is a rare disorder of organic acid metabolism caused by deficiency of glutaryl-CoA dehydrogenase, a mitochondrial enzyme. Improper degeneration of amino acids: tryptophan, lysine, and hydroxylysine, results in increased levels of glutaric acid, which typically becomes clinically manifest as an acute dystonic crisis in young children. Accumulation of glutaric acid causes neurotoxicity in the basal ganglia and fronto-temporal cortex which can lead to progressive dystonia, hypotonia, permanently impaired speech and seizures. Because dietary and drug therapy may alter the natural history of the disease, early diagnosis of such patients is critical. We report the magnetic resonance (MR) imaging findings in a 16 year-old girl with this disorder who presented with a chronic dystonic syndrome and previously diagnosed of brain paralysis. MR imaging demonstrated bilateral involvement of the putamina and periventricular white matter, and bilateral temporal atrophy and widened Silvian fissure

    Radioterapia estereotáctica

    No full text
    La radioterapia con técnica estereotáctica es una modalidad de radioterapia externa que utiliza un sistema de coordenadas tridimensionales independientes del paciente para la localización precisa de la lesión. También se caracteriza porque los haces de irradiación son altamente conformados, precisos y convergentes sobre la lesión que hacen posible la administración de dosis muy altas de radioterapia sin incrementar la irradiación de los órganos o estructuras sanas adyacentes. Cuando el procedimiento se realiza en una sesión de tratamiento se denomina radiocirugía y si se administra en varias sesiones se denomina radioterapia estereotáctica. Se precisa de sistemas de fijación e inmovilización del paciente especiales (guías o marcos estereotácticos) y dispositivos de radioterapia capaces de generar haces muy conformados (acelerador lineal, gammaknife, cyberknife, tomoterapia, ciclotrones). La radioterapia estereotáctica moderna utiliza marcas radioopacas intratumorales o sistemas de imágenes de TAC incluidos en el dispositivo de irradiación, que permiten una precisa localización de las lesiones móviles en cada sesión de tratamiento. Además, los avances tecnológicos hacen posible coordinar los movimientos de la lesión en la respiración con la unidad de radioterapia (gaiting y tracking) de forma que pueden estrecharse al máximo los márgenes y por lo tanto excluir un mayor volumen de tejido sano La radiocirugía está indicada principalmente en lesiones cerebrales benignas o malignas menores de 3-4 centímetros (malformaciones arteriovenosas, neurinomas, meningiomas, metástasis cerebrales) y la radioterapia estereotáctica se administra fundamentalmente en tumores de localización extracraneal que requieran una alta conformación y precisión como cáncer precoz de pulmón inoperable y metástasis hepáticas.Stereotactic radiotherapy is an external radiation modality that uses a system of three dimensional references independent of the patient to achive a precise location of the lesion. Stereotactic radiotherapy generate highly conformal, precisely focused radiation beams to administer very high doses of radiation without increasing the radiation to healthy surrounding organs or structures. When the procedure is carried out in one treatment session the procedure is termed radiosurgery, and when the treatment is administered in several fractions, the radiation modality is termed stereotactic radiotherapy. Special systems of patient immobilization (guides or stereotactic frames) are required together with radiotherapy devices capable of generating conformal beams (lineal accelerator, gammaknife, cyberknife, tomotherapy, cyclotrons). Modern stereotactic radiotherapy techniques employ intratumoural radio-opaque fiducials or CT image systems included in the irradiation device, which make possible a precise location of mobile lesions in each treatment session. Besides, technological advances permit breathing synchronized radiation (gating and tracking) for maximum tightening of margins and excluding a greater volume of healthy tissue. Radiosurgery is mainly indicated in benign or malign cerebral lesions less than 3-4 centimetres (arteriovenous malformations, neurinomas, meningiomas, cerebral metastases) and stereotactic radiotherapy is basically administered in tumours of extracraneal location that require high conformation and precision, such as inoperable early lung cancer and liver metastasis

    Functional bold MRI: advantages of the 3 T vs. the 1.5 T

    No full text
    We quantitatively evaluate the benefits of a higher field strength for functional brain MRI (fMRI) based on the blood oxygenation level-dependent contrast. The 3-T fMRI shows a higher sensitivity for the motor and somatosensory stimulation and more specific localization in the grey substance. The 3-T fMRI detects additional areas of activation with the motor paradigm
    corecore