1,339 research outputs found
Cooper pairs as bosons
Although BCS pairs of fermions are known not to obey Bose-Einstein (BE)
commutation relations nor BE statistics, we show how Cooper pairs (CPs),
whether the simple original ones or the CPs recently generalized in a many-body
Bethe-Salpeter approach, being clearly distinct from BCS pairs at least obey BE
statistics. Hence, contrary to widespread popular belief, CPs can undergo BE
condensation to account for superconductivity if charged, as well as for
neutral-atom fermion superfluidity where CPs, but uncharged, are also expected
to form.Comment: 8 pages, 2 figures, full biblio info adde
Further evidence for linearly-dispersive Cooper pairs
A recent Bose-Einstein condensation (BEC) model of several cuprate
superconductors is based on bosonic Cooper pairs (CPs) moving in 3D with a
quadratic energy-momentum (dispersion) relation. The 3D BEC condensate-fraction
vs. temperature (T/Tc, where Tc is the BEC transition temperature) formula
poorly fits penetration-depth data for two cuprates in the range (1/2, 1]. We
show how these fits are dramatically improved assuming cuprates to be quasi-2D,
and how equally good fits obtain for conventional 3D and quasi-1D nanotube
superconducting data, provided the correct CP dispersion is assumed in BEC at
their assumed corresponding dimensionalities. This is offered as additional
concrete empirical evidence for linearly-dispersive pairs in another recent BEC
scenario of superconductors within which a BCS condensate turns out to be a
very special case.Comment: 9 pages, 1 figur
Results from the third Scottish National Prevalence Survey: is a population health approach now needed to prevent healthcare-associated infections?
Summary Background Healthcare associated infections (HAI) are a major public health concern and a significant cause of morbidity and mortality. A robust and current evidence base that is specific to local, national and Europe-wide settings is necessary to inform the development of strategies to reduce HAI and contain antimicrobial resistance (AMR). Aim To measure the prevalence of HAI and antimicrobial prescribing and identify key priority areas for interventions to reduce the burden of infection. Methods A national rolling PPS in National Health Service (NHS) acute, NHS non-acute, NHS paediatric and independent hospitals was carried out between September and November 2016 using the European Centre for Disease Prevention and Control protocol designed for the European PPS. Findings The prevalence of HAI was 4.6%, 2.7% and 3.2% in acute adults, paediatric and non-acute patient groups, respectively. The most common HAI types reported in adult patients were urinary tract infection and pneumonia. The prevalence of antimicrobial prescribing was 35.7%, 29.3% and 13.8% in acute adults, paediatric and non-acute patient groups, respectively. Respiratory, skin and soft tissue, gastrointestinal and urinary tract infections were the most common infections being treated at the time of survey. Conclusion HAI continues to be a public health concern in Scotland. UTI and pneumonia continue to place a significant burden on patients and on healthcare delivery, including those that develop in the community and require hospital admission. A broader population health approach which focuses on reducing the risk of infection upstream would reduce these infections in both community and hospital settings
Harmonically Trapped Quantum Gases
We solve the problem of a Bose or Fermi gas in -dimensions trapped by mutually perpendicular harmonic oscillator potentials. From the
grand potential we derive their thermodynamic functions (internal energy,
specific heat, etc.) as well as a generalized density of states. The Bose gas
exhibits Bose-Einstein condensation at a nonzero critical temperature
if and only if , and a jump in the specific heat at if and
only if . Specific heats for both gas types precisely coincide as
functions of temperature when . The trapped system behaves like an
ideal free quantum gas in dimensions. For we recover
all known thermodynamic properties of ideal quantum gases in dimensions,
while in 3D for 1, 2 and 3 one simulates behavior reminiscent of
quantum {\it wells, wires}and{\it dots}, respectively.Comment: 14 pages including 3 figures and 3 table
Bose-Einstein Condensation in the Relativistic Ideal Bose Gas
The Bose-Einstein condensation (BEC) critical temperature in a relativistic
ideal Bose gas of identical bosons, with and without the antibosons expected to
be pair-produced abundantly at sufficiently hot temperatures, is exactly
calculated for all boson number-densities, all boson point rest masses, and all
temperatures. The Helmholtz free energy at the critical BEC temperature is
found to be lower, thus implying that the omission of antibosons always leads
to the computation of a metastable state.Comment: 10 pages, 4 figure
J. H. Newman, hoy
Documentos del Instituto de AntropologĂa y Ética, nĂşmero 1
- …