1,339 research outputs found

    Cooper pairs as bosons

    Full text link
    Although BCS pairs of fermions are known not to obey Bose-Einstein (BE) commutation relations nor BE statistics, we show how Cooper pairs (CPs), whether the simple original ones or the CPs recently generalized in a many-body Bethe-Salpeter approach, being clearly distinct from BCS pairs at least obey BE statistics. Hence, contrary to widespread popular belief, CPs can undergo BE condensation to account for superconductivity if charged, as well as for neutral-atom fermion superfluidity where CPs, but uncharged, are also expected to form.Comment: 8 pages, 2 figures, full biblio info adde

    Further evidence for linearly-dispersive Cooper pairs

    Full text link
    A recent Bose-Einstein condensation (BEC) model of several cuprate superconductors is based on bosonic Cooper pairs (CPs) moving in 3D with a quadratic energy-momentum (dispersion) relation. The 3D BEC condensate-fraction vs. temperature (T/Tc, where Tc is the BEC transition temperature) formula poorly fits penetration-depth data for two cuprates in the range (1/2, 1]. We show how these fits are dramatically improved assuming cuprates to be quasi-2D, and how equally good fits obtain for conventional 3D and quasi-1D nanotube superconducting data, provided the correct CP dispersion is assumed in BEC at their assumed corresponding dimensionalities. This is offered as additional concrete empirical evidence for linearly-dispersive pairs in another recent BEC scenario of superconductors within which a BCS condensate turns out to be a very special case.Comment: 9 pages, 1 figur

    Results from the third Scottish National Prevalence Survey: is a population health approach now needed to prevent healthcare-associated infections?

    Get PDF
    Summary Background Healthcare associated infections (HAI) are a major public health concern and a significant cause of morbidity and mortality. A robust and current evidence base that is specific to local, national and Europe-wide settings is necessary to inform the development of strategies to reduce HAI and contain antimicrobial resistance (AMR). Aim To measure the prevalence of HAI and antimicrobial prescribing and identify key priority areas for interventions to reduce the burden of infection. Methods A national rolling PPS in National Health Service (NHS) acute, NHS non-acute, NHS paediatric and independent hospitals was carried out between September and November 2016 using the European Centre for Disease Prevention and Control protocol designed for the European PPS. Findings The prevalence of HAI was 4.6%, 2.7% and 3.2% in acute adults, paediatric and non-acute patient groups, respectively. The most common HAI types reported in adult patients were urinary tract infection and pneumonia. The prevalence of antimicrobial prescribing was 35.7%, 29.3% and 13.8% in acute adults, paediatric and non-acute patient groups, respectively. Respiratory, skin and soft tissue, gastrointestinal and urinary tract infections were the most common infections being treated at the time of survey. Conclusion HAI continues to be a public health concern in Scotland. UTI and pneumonia continue to place a significant burden on patients and on healthcare delivery, including those that develop in the community and require hospital admission. A broader population health approach which focuses on reducing the risk of infection upstream would reduce these infections in both community and hospital settings

    Harmonically Trapped Quantum Gases

    Full text link
    We solve the problem of a Bose or Fermi gas in dd-dimensions trapped by δ≤d% \delta \leq d mutually perpendicular harmonic oscillator potentials. From the grand potential we derive their thermodynamic functions (internal energy, specific heat, etc.) as well as a generalized density of states. The Bose gas exhibits Bose-Einstein condensation at a nonzero critical temperature TcT_{c} if and only if d+δ>2d+\delta >2, and a jump in the specific heat at TcT_{c} if and only if d+δ>4d+\delta >4. Specific heats for both gas types precisely coincide as functions of temperature when d+δ=2d+\delta =2. The trapped system behaves like an ideal free quantum gas in d+δd+\delta dimensions. For δ=0\delta =0 we recover all known thermodynamic properties of ideal quantum gases in dd dimensions, while in 3D for δ=\delta = 1, 2 and 3 one simulates behavior reminiscent of quantum {\it wells, wires}and{\it dots}, respectively.Comment: 14 pages including 3 figures and 3 table

    Bose-Einstein Condensation in the Relativistic Ideal Bose Gas

    Full text link
    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number-densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is found to be lower, thus implying that the omission of antibosons always leads to the computation of a metastable state.Comment: 10 pages, 4 figure

    J. H. Newman, hoy

    Get PDF
    Documentos del Instituto de Antropología y Ética, número 1
    • …
    corecore