587 research outputs found

    Skylab vectorcardiograph: System description and in flight operation

    Get PDF
    A vectorcardiograph system was used to measure cardiac electrical activity of Skylab crewmen. This system was chosen because of its data-quantification advantages. The vectorcardiograph was required to meet recommended American Heart Association specifications, to withstand space environmental extremes, and to facilitate data gathering in the weightless environment. The vectorcardiograph system performed without failure, and all projected data were acquired. The appendix lists the design specifications used for the Skylab vectorcardiograph system

    Determining the cosmic ray ionization rate in dynamically evolving clouds

    Full text link
    The ionization fraction is an important factor in determining the chemical and physical evolution of star forming regions. In the dense, dark starless cores of such objects, the ionization rate is dominated by cosmic rays; it is therefore possible to use simple analytic estimators, based on the relative abundances of different molecular tracers, to determine the cosmic ray ionization rate. This paper uses a simple model to investigate the accuracy of two well-known estimators in dynamically evolving molecular clouds. It is found that, although the analytical formulae based on the abundances of H3+,H2,CO,O,H2O and HCO+ give a reasonably accurate measure of the cosmic ray ionization rate in static, quiescent clouds, significant discrepancies occur in rapidly evolving (collapsing) clouds. As recent evidence suggests that molecular clouds may consist of complex, dynamically evolving sub-structure, we conclude that simple abundance ratios do not provide reliable estimates of the cosmic ray ionization rate in dynamically active regions.Comment: Accepted by A&A. 17 pages, 4 figure

    The Ultraviolet Attenuation Law in Backlit Spiral Galaxies

    Get PDF
    (Abridged) The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use GALEX, XMM Optical Monitor, and HST data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with candidates provided by Galaxy Zoo participants. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law close to the Calzetti et al. (1994) form; the UV slope for the overall sample is substantially shallower than found by Wild et al. (2011), a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. This "grey" law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. The extrapolation needed to compare attenution between backlit galaxies at moderate redshifts, and local systems from SDSS data, is mild enough to allow use of galaxy overlaps to trace the cosmic history of dust. For NGC 2207, the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the ultraviolet, which opens the possibility that widespread diffuse dust dominates over dust in star-forming regions deep into the ultraviolet. Comparison with published radiative-transfer models indicates that the role of dust clumping dominates over differences in grain populations, at this spatial resolution.Comment: In press, Astronomical Journa

    City life makes females fussy : sex differences in habitat use of temperate bats in urban areas

    Get PDF
    Urbanization is a major driver of the global loss of biodiversity; to mitigate its adverse effects, it is essential to understand what drives species' patterns of habitat use within the urban matrix. While many animal species are known to exhibit sex differences in habitat use, adaptability to the urban landscape is commonly examined at the species level, without consideration of intraspecific differences. The high energetic demands of pregnancy and lactation in female mammals can lead to sexual differences in habitat use, but little is known of how this might affect their response to urbanization. We predicted that female Pipistrellus pygmaeus would show greater selectivity of forging locations within urban woodland in comparison to males at both a local and landscape scale. In line with these predictions, we found there was a lower probability of finding females within woodlands which were poorly connected, highly cluttered, with a higher edge : interior ratio and fewer mature trees. By contrast, habitat quality and the composition of the surrounding landscape were less of a limiting factor in determining male distributions. These results indicate strong sexual differences in the habitat use of fragmented urban woodland, and this has important implications for our understanding of the adaptability of bats and mammals more generally to urbanization.Publisher PDFPeer reviewe

    Galaxy Zoo: Multimergers and the Millennium Simulation

    Get PDF
    We present a catalogue of 39 multiple mergers, found using the mergers catalogue of the Galaxy Zoo project for z <0.1, and compare them to corresponding semi-analytical galaxies from the Millennium Simulation. We estimate the (volume-limited) multimerger fraction of the local Universe using our sample and find it to be at least 2 orders of magnitude less than binary mergers - in good agreement with the simulations (especially the Munich group). We then investigate the properties of galaxies in binary mergers and multimergers (morphologies, colours, stellar masses and environment) and compare these results with those predicted by the semi-analytical galaxies. We find that multimergers favour galaxies with properties typical of elliptical morphologies and that this is in qualitative agreement with the models. Studies of multimergers thus provide an independent (and largely corroborating) test of the Millennium semi-analytical models.Peer reviewe

    Predicting Interstellar Object Chemodynamics with Gaia

    Full text link
    The interstellar object population of the Milky Way is a product of its stars. However, what is in fact a complex structure in the Solar neighbourhood has traditionally in ISO studies been described as smoothly distributed. Using a debiased stellar population derived from the Gaia DR3 stellar sample, we infer that the velocity distribution of ISOs is far more textured than a smooth Gaussian. The moving groups caused by Galactic resonances dominate the distribution. 1I/`Oumuamua and 2I/Borisov have entirely normal places within these distributions; 1I is within the non-coeval moving group that includes the Matariki (Pleiades) cluster, and 2I within the Coma Berenices moving group. We show that for the composition of planetesimals formed beyond the ice line, these velocity structures also have a chemodynamic component. This variation will be visible on the sky. We predict that this richly textured distribution will be differentiable from smooth Gaussians in samples that are within the expected discovery capacity of the Vera C. Rubin Observatory. Solar neighbourhood ISOs will be of all ages and come from a dynamic mix of many different populations of stars, reflecting their origins from all around the Galactic disk.Comment: Submitted to A
    • …
    corecore