12,861 research outputs found

    Automated Reasoning and Presentation Support for Formalizing Mathematics in Mizar

    Full text link
    This paper presents a combination of several automated reasoning and proof presentation tools with the Mizar system for formalization of mathematics. The combination forms an online service called MizAR, similar to the SystemOnTPTP service for first-order automated reasoning. The main differences to SystemOnTPTP are the use of the Mizar language that is oriented towards human mathematicians (rather than the pure first-order logic used in SystemOnTPTP), and setting the service in the context of the large Mizar Mathematical Library of previous theorems,definitions, and proofs (rather than the isolated problems that are solved in SystemOnTPTP). These differences poses new challenges and new opportunities for automated reasoning and for proof presentation tools. This paper describes the overall structure of MizAR, and presents the automated reasoning systems and proof presentation tools that are combined to make MizAR a useful mathematical service.Comment: To appear in 10th International Conference on. Artificial Intelligence and Symbolic Computation AISC 201

    Two-fluid model for a rotating trapped Fermi gas in the BCS phase

    Full text link
    We investigate the dynamical properties of a superfluid gas of trapped fermionic atoms in the BCS phase. As a simple example we consider the reaction of the gas to a slow rotation of the trap. It is shown that the currents generated by the rotation can be understood within a two-fluid model similar to the one used in the theory of superconductors, but with a position dependent ratio of normal and superfluid densities. The rather general result of this paper is that already at very low temperatures, far below the critical one, an important normal-fluid component appears in the outer regions of the gas. This renders the experimental observation of superfluidity effects more difficult and indicates that reliable theoretical predictions concerning other dynamical properties, like the frequencies of collective modes, can only be made by taking into account temperature effects.Comment: 6 pages, 4 figure

    Tunable dynamical channel blockade in double-dot Aharonov-Bohm interferometers

    Full text link
    We study electronic transport through an Aharonov-Bohm interferometer with single-level quantum dots embedded in the two arms. The full counting statistics in the shot-noise regime is calculated to first order in the tunnel-coupling strength. The interplay of interference and charging energy in the dots leads to a dynamical channel blockade that is tunable by the magnetic flux penetrating the Aharonov-Bohm ring. We find super-Poissonian behavior with diverging second and higher cumulants when the Aharonov-Bohm flux approaches an integer multiple of the flux quantum.Comment: published version, 10 pages, 10 figure

    Improving the Sensitivity of Advanced LIGO Using Noise Subtraction

    Get PDF
    This paper presents an adaptable, parallelizable method for subtracting linearly coupled noise from Advanced LIGO data. We explain the features developed to ensure that the process is robust enough to handle the variability present in Advanced LIGO data. In this work, we target subtraction of noise due to beam jitter, detector calibration lines, and mains power lines. We demonstrate noise subtraction over the entirety of the second observing run, resulting in increases in sensitivity comparable to those reported in previous targeted efforts. Over the course of the second observing run, we see a 30% increase in Advanced LIGO sensitivity to gravitational waves from a broad range of compact binary systems. We expect the use of this method to result in a higher rate of detected gravitational-wave signals in Advanced LIGO data.Comment: 15 pages, 6 figure

    Sustaining Collection Value: Managing Collection/Item Metadata Relationships

    Get PDF
    Many aspects of managing collection/item metadata relationships are critical to sustaining collection value over time. Metadata at the collection-level not only provides context for finding, understanding, and using the items in the collection, but is often essential to the particular research and scholarly activities the collection is designed to support. Contemporary retrieval systems, which search across collections, usually ignore collection level metadata. Alternative approaches, informed by collection-level information, will require an understanding of the various kinds of relationships that can obtain between collection-level and item-level metadata. This paper outlines the problem and describes a project that is developing a logic-based framework for classifying collection-level/item-level metadata relationships. This framework will support (i) metadata specification developers defining metadata elements, (ii) metadata librarians describing objects, and (iii) system designers implementing systems that help users take advantage of collection-level metadata.Institute for Museum and Libary Services (Grant #LG06070020)published or submitted for publicationis peer reviewe

    Magnetic Switching of Phase-Slip Dissipation in NbSe2 Nanobelts

    Full text link
    The stability of the superconducting dissipationless and resistive states in single-crystalline NbSe2 nanobelts is characterized by transport measurements in an external magnetic field (H). Current-driven electrical measurements show voltage steps, indicating the nucleation of phase-slip structures. Well below the critical temperature, the position of the voltage steps exhibits a sharp, periodic dependence as a function of H. This phenomenon is discussed in the context of two possible mechanisms: the interference of the order parameter and the periodic rearrangement of the vortex lattice within the nanobelt.Comment: 4 figure

    Reimagining quality in early childhood [Editorial]

    Get PDF
    This special issue brings together a collection of rich, complex and challenging contributions that attempt to offer generative approaches to reconfigure what might constitute ‘quality’ within early years education. The issue came about from a shared concern about what Moss (this issue) refers to as the ‘gravitational pull’ of quality in early childhood education; debates about quality have existed for a considerable time and, despite rigorous critique, remain resolute. This issue aims to revisit and extend the groundbreaking work undertaken by Gunilla Dahlberg, Peter Moss and Alan Pence (1999, 2007) in Beyond Quality in Early Childhood Education and Care: Postmodern Perspectives and in the subsequent revised edition. In both texts, the authors made the astute observation that the concept and language of quality cannot accommodate issues such as diversity and multiple perspectives, contextual specificity and subjectivity. They argue that we must ‘go beyond the concept of quality’ (Dahlberg et al., 2007: 6) and, in so doing, suggest working with a new concept: ‘meaning making’

    ENIGMA: Efficient Learning-based Inference Guiding Machine

    Full text link
    ENIGMA is a learning-based method for guiding given clause selection in saturation-based theorem provers. Clauses from many proof searches are classified as positive and negative based on their participation in the proofs. An efficient classification model is trained on this data, using fast feature-based characterization of the clauses . The learned model is then tightly linked with the core prover and used as a basis of a new parameterized evaluation heuristic that provides fast ranking of all generated clauses. The approach is evaluated on the E prover and the CASC 2016 AIM benchmark, showing a large increase of E's performance.Comment: Submitted to LPAR 201
    • …
    corecore