112 research outputs found

    Clay smear: Review of mechanisms and applications

    Get PDF
    AbstractClay smear is a collection of fault processes and resulting fault structures that form when normal faults deform layered sedimentary sections. These elusive structures have attracted deep interest from researchers interested in subsurface fluid flow, particularly in the oil and gas industry. In the four decades since the association between clay-smear structures and oil and gas accumulations was introduced, there has been extensive research into the fault processes that create clay smear and the resulting effects of that clay smear on fluid flow. We undertake a critical review of the literature associated with outcrop studies, laboratory and numerical modeling, and subsurface field studies of clay smear and propose a comprehensive summary that encompasses all of these elements. Important fault processes that contribute to clay smear are defined in the context of the ratio of rock strength and in situ effective stresses, the geometric evolution of fault systems, and the composition of the faulted section. We find that although there has been progress in all avenues pursued, progress has been uneven, and the processes that disrupt clay smears are mostly overlooked. We highlight those research areas that we think will yield the greatest benefit and suggest that taking these emerging results within a more process-based framework presented here will lead to a new generation of clay smear models

    The Jabal Akhdar Dome in the Oman Mountains : evolution of a dynamic fracture system

    Get PDF
    Acknowledgments: This study was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modelling,” which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdo¨l- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish these results. The German University of Technology in Oman (GU-Tech) is acknowledged for its logistic support. We gratefully acknowledge the reviewers Andrea Billi and Jean-Paul Breton, whose constructive reviews greatly improved the manuscriptPeer reviewedPreprin

    Tectono-thermal evolution of Oman's Mesozoic passive continental margin under the obducting Semail Ophiolite: a case study of Jebel Akhdar, Oman

    Get PDF
    We present a study of pressure and temperature evolution in the passive continental margin under the Oman Ophiolite using numerical basin models calibrated with thermal maturity data, fluid-inclusion thermometry, and low-temperature thermochronometry and building on the results of recent work on the tectonic evolution. Because the Oman mountains experienced only weak post-obduction overprint, they offer a unique natural laboratory for this study. Thermal maturity data from the Adam Foothills constrain burial in the basin in front of the advancing nappes to at least 4&thinsp;km. Peak temperature evolution in the carbonate platform under the ophiolite depends on the burial depth and only weakly on the temperature of the overriding nappes, which have cooled during transport from the oceanic subduction zone to emplacement. Fluid-inclusion thermometry yields pressure-corrected homogenization temperatures of 225 to 266&thinsp;∘C for veins formed during progressive burial, 296–364&thinsp;∘C for veins related to peak burial, and 184 to 213&thinsp;∘C for veins associated with late-stage strike-slip faulting. In contrast, the overlying Hawasina nappes have not been heated above 130–170&thinsp;∘C, as witnessed by only partial resetting of the zircon (U-Th)/He thermochronometer. In combination with independently determined temperatures from solid bitumen reflectance, we infer that the fluid inclusions of peak-burial-related veins formed at minimum pressures of 225–285&thinsp;MPa. This implies that the rocks of the future Jebel Akhdar Dome were buried under 8–10&thinsp;km of ophiolite on top of 2&thinsp;km of sedimentary nappes, in agreement with thermal maturity data from solid bitumen reflectance and Raman spectroscopy. Rapid burial of the passive margin under the ophiolite results in sub-lithostatic pore pressures, as indicated by veins formed in dilatant fractures in the carbonates. We infer that overpressure is induced by rapid burial under the ophiolite. Tilting of the carbonate platform in combination with overpressure in the passive margin caused fluid migration towards the south in front of the advancing nappes. Exhumation of the Jebel Akhdar, as indicated by our zircon (U-Th)/He data and in agreement with existing work on the tectonic evolution, started as early as the Late Cretaceous to early Cenozoic, linked with extension above a major listric shear zone with top-to-NNE shear sense. In a second exhumation phase the carbonate platform and obducted nappes of the Jebel Akhdar Dome cooled together below ca. 170&thinsp;∘C between 50 and 40&thinsp;Ma before the final stage of anticline formation.</p

    Climate crisis and ecological emergency: why they concern (neuro)scientists, and what we can do

    Get PDF
    Our planet is experiencing severe and accelerating climate and ecological breakdown caused by human activity. As professional scientists, we are better placed than most to understand the data that evidence this fact. However, like most other people, we ignore this inconvenient truth and lead our daily lives, at home and at work, as if these facts weren’t true. In particular, we overlook that our own neuroscientific research practices, from our laboratory experiments to our often global travel, help drive climate change and ecosystem damage. We also hold privileged positions of authority in our societies but rarely speak out. Here, we argue that to help society create a survivable future, we neuroscientists can and must play our part. In April 2021, we delivered a symposium at the British Neuroscience Association meeting outlining what we think neuroscientists can and should do to help stop climate breakdown. Building on our talks (Box 1), we here outline what the climate and ecological emergencies mean for us as neuroscientists. We highlight the psychological mechanisms that block us from taking action, and then outline what practical steps we can take to overcome these blocks and work towards sustainability. In particular, we review environmental issues in neuroscience research, scientific computing, and conferences. We also highlight the key advocacy roles we can all play in our institutions and in society more broadly. The need for sustainable change has never been more urgent, and we call on all (neuro)scientists to act with the utmost urgency

    Salt Creep: Transition Between the Low and High Stress Domains

    Get PDF
    In 2014–2016, creep tests were performed in a dead-end drift of the Altaussee mine, where temperature and relative humidity experience very small fluctuations. These tests, which were several months long, proved that the creep rate of a natural salt sample is much faster in the 0.2–1 MPa deviatoric stress range than the creep rate extrapolated from standard laboratory creep tests performed in the 5–20 MPa range. In addition, the quasi-steady strain rate is a linear function of stress, and it is faster when grain size is smaller. These findings were consistent with microphysical models of pressure solution creep (rather than dislocation creep, which is the governing creep mechanism at high stresses). A gap in experimental data remained in the 1–5 MPa range, calling for a follow-up experimental program. In 2016–2019, three multi-stage creep tests were performed on salt samples from Hauterives (France), Avery Island (Louisiana, USA), and Gorleben (Germany), which had been tested in the 0.2–1 MPa range during the 2014–2016 campaign. Loads of 1.5, 3, and 4.5 MPa were applied successively on each sample for 8 months. Steady state was not reached at the end of each 8-month stage. However, tests results suggest that, in the 0.2–3 MPa range, the relationship between the strain rate and the applied stress is linear, a characteristic feature of pressure solution. For these three samples, the relationship between strain rate and deviatoric stress departs from linearity when the deviator is larger than approximately 3–4.5 MPa, pointing to a transition to dislocation creep at higher deviatoric levels

    Standardized and reproducible measurement of decision-making in mice

    Get PDF
    Progress in science requires standardized assays whose results can be readily shared, compared, and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience, particularly for measurements of mouse behavior. Here we show that a standardized task to probe decision-making in mice produces reproducible results across multiple laboratories. We designed a task for head-fixed mice that combines established assays of perceptual and value-based decision making, and we standardized training protocol and experimental hardware, software, and procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse choices into a publicly available database. Learning speed was variable across mice and laboratories, but once training was complete there were no significant differences in behavior across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past successes and failures, and on estimates of stimulus prior probability to guide their choices. These results reveal that a complex mouse behavior can be successfully reproduced across multiple laboratories. They establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and open-access tools to study decision-making in mice. More generally, they indicate a path towards achieving reproducibility in neuroscience through collaborative open-science approaches
    corecore