10,164 research outputs found
Analysis of SPAR 8 single-axis levitation experiment
The melting and resolidification of SPAR 8 payload melting and resolidification of a glass specimen from the in a containerless condition and the retrieval and examination of the specimen from the. The absence of container contact was assured by use of a single-axis acoustic levitation system. However, the sample contacted a wire cage after being held without container contact by the acoustic field for only approximately 87 seconds. At this time, the sample was still molten and, therefore, flowed aroung the wire and continued to adhere to it. An analysis of why the sample did not remain levitated free of container contact is presented. The experiment is described, and experimental observations are discussed and analyzed
Influence of Phase Matching on the Cooper Minimum in Ar High Harmonic Spectra
We study the influence of phase matching on interference minima in high
harmonic spectra. We concentrate on structures in atoms due to interference of
different angular momentum channels during recombination. We use the Cooper
minimum (CM) in argon at 47 eV as a marker in the harmonic spectrum. We measure
2d harmonic spectra in argon as a function of wavelength and angular
divergence. While we identify a clear CM in the spectrum when the target gas
jet is placed after the laser focus, we find that the appearance of the CM
varies with angular divergence and can even be completely washed out when the
gas jet is placed closer to the focus. We also show that the argon CM appears
at different wavelengths in harmonic and photo-absorption spectra measured
under conditions independent of any wavelength calibration. We model the
experiment with a simulation based on coupled solutions of the time-dependent
Schr\"odinger equation and the Maxwell wave equation, including both the single
atom response and macroscopic effects of propagation. The single atom
calculations confirm that the ground state of argon can be represented by its
field free symmetry, despite the strong laser field used in high harmonic
generation. Because of this, the CM structure in the harmonic spectrum can be
described as the interference of continuum and channels, whose relative
phase jumps by at the CM energy, resulting in a minimum shifted from the
photoionization result. We also show that the full calculations reproduce the
dependence of the CM on the macroscopic conditions. We calculate simple phase
matching factors as a function of harmonic order and explain our experimental
and theoretical observation in terms of the effect of phase matching on the
shape of the harmonic spectrum. Phase matching must be taken into account to
fully understand spectral features related to HHG spectroscopy
Alternativity and reciprocity in the Cayley-Dickson algebra
We calculate the eigenvalue \rho of the multiplication mapping R on the
Cayley-Dickson algebra A_n. If the element in A_n is composed of a pair of
alternative elements in A_{n-1}, half the eigenvectors of R in A_n are still
eigenvectors in the subspace which is isomorphic to A_{n-1}.
The invariant under the reciprocal transformation A_n \times A_{n} \ni (x,y)
-> (-y,x) plays a fundamental role in simplifying the functional form of \rho.
If some physical field can be identified with the eigenspace of R, with an
injective map from the field to a scalar quantity (such as a mass) m, then
there is a one-to-one map \pi: m \mapsto \rho. As an example, the electro-weak
gauge field can be regarded as the eigenspace of R, where \pi implies that the
W-boson mass is less than the Z-boson mass, as in the standard model.Comment: To be published in J. Phys. A: Mathematical and Genera
Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium
We present a theoretical study of transient absorption and reshaping of
extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately
strong infrared (IR) laser field. We formulate the atomic response using both
the frequency-dependent absorption cross section and a time-frequency approach
based on the time-dependent dipole induced by the light fields. The latter
approach can be used in cases when an ultrafast dressing pulse induces
transient effects, and/or when the atom exchanges energy with multiple
frequency components of the XUV field. We first characterize the dressed atom
response by calculating the frequency-dependent absorption cross section for
XUV energies between 20 and 24 eV for several dressing wavelengths between 400
and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing
wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p
transition that can potentially lead to transparency for absorption of XUV
light tuned to this transition. We study the effect of this XUV transparency in
a macroscopic helium gas by incorporating the time-frequency approach into a
solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal
reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p
transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser
pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise
Euler angles for G2
We provide a simple parametrization for the group G2, which is analogous to
the Euler parametrization for SU(2). We show how to obtain the general element
of the group in a form emphasizing the structure of the fibration of G2 with
fiber SO(4) and base H, the variety of quaternionic subalgebras of octonions.
In particular this allows us to obtain a simple expression for the Haar measure
on G2. Moreover, as a by-product it yields a concrete realization and an
Einstein metric for H.Comment: 21 pages, 2 figures, some misprints correcte
Locally Adaptive Shrinkage Priors for Trends and Breaks in Count Time Series
Non-stationary count time series characterized by features such as abrupt
changes and fluctuations about the trend arise in many scientific domains
including biophysics, ecology, energy, epidemiology, and social science
domains. Current approaches for integer-valued time series lack the flexibility
to capture local transient features while more flexible models for continuous
data types are inadequate for universal applications to integer-valued
responses such as settings with small counts. We present a modeling framework,
the negative binomial Bayesian trend filter (NB-BTF), that offers an adaptive
model-based solution to capturing multiscale features with valid integer-valued
inference for trend filtering. The framework is a hierarchical Bayesian model
with a dynamic global-local shrinkage process. The flexibility of the
global-local process allows for the necessary local regularization while the
temporal dependence induces a locally smooth trend. In simulation, the NB-BTF
outperforms a number of alternative trend filtering methods. Then, we
demonstrate the method on weekly power outage frequency in Massachusetts
townships. Power outage frequency is characterized by a nominal low level with
occasional spikes. These illustrations show the estimation of a smooth,
non-stationary trend with adequate uncertainty quantification.Comment: 31 pages, 6 figure
Attosecond pulse shaping around a Cooper minimum
High harmonic generation (HHG) is used to measure the spectral phase of the
recombination dipole matrix element (RDM) in argon over a broad frequency range
that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well
with predictions based on the scattering phases and amplitudes of the
interfering s- and d-channel contributions to the complementary photoionization
process. The reconstructed attosecond bursts that underlie the HHG process show
that the derivative of the RDM spectral phase, the group delay, does not have a
straight-forward interpretation as an emission time, in contrast to the usual
attochirp group delay. Instead, the rapid RDM phase variation caused by the CM
reshapes the attosecond bursts.Comment: 5 pages, 5 figure
Carrier and Light Trapping in Graded Quantum Well Laser Structures
We investigated the carrier and light trapping in GaInAs/AlGaAs single
quantum well laser structures by means of time resolved photoluminescence and
Raman spectroscopy. The influence of the shape and depth of the confinement
potential and of the cavity geometry was studied by using different AlGaAs/GaAs
short-period superlattices as barriers. Our results show that grading the
optical cavity improves considerably both carrier and light trapping in the
quantum well, and that the trapping efficiency is enhanced by increasing the
graded confining potential.Comment: PDF-format, 15 pages (including 4 figures), Applied Physics Letters
(June 2000
Theoretical aspects of intense field harmonic generation
We present theoretical studies of high-order harmonic generation in a rare-gas medium. The experimental results obtained at Saclay with a 1064 nm Nd-YAG laser in the 1013 W cm-2 intensity range are summarized. The harmonic emission strengths first decrease rather steeply for the first orders, then form a long plateau up to the 21st harmonic in xenon, or up to the 33rd harmonic in argon, before decreasing again rather abruptly. The theoretical description of these experiments consists first in the calculation of the photoemission spectra emitted by a single atom. The spectra are obtained by numerically integrating a time-dependent Schrôdinger equation for the laser-excited rare-gas atom. Second, one must account for collective effects in the medium, described by Maxwell’s equations. A theoretical framework for describing the generation and propagation of harmonics in strong laser fields is developed. A numerical solution of the propagation equations for the harmonic fields in xenon at 1064 nm provides results which agree well with experimental data. We discuss the role of phase matching in the high-order harmonic generation experiments. The main conclusion is that phase matching is determined not only by the variation of the phases of the interfering fields in the non-linear medium, but also by the variation of the amplitudes throughout the medium. We find orders of magnitude improvement in phase matching in a strong-field regime compared with the perturbative limit. © 1991 IOP Publishing Ltd
- …