9,251 research outputs found
Refined physical properties and g',r',i',z',J,H,K transmission spectrum of WASP-23b from the ground
Multi-band observations of planetary transits using the telescope defocus
technique may yield high-quality light curves suitable for refining the
physical properties of exoplanets even with small or medium size telescopes.
Such observations can be used to construct a broad-band transmission spectrum
of transiting planets and search for the presence of strong absorbers. We have
thoroughly characterised the orbital ephemeris and physical properties of the
transiting planet and host star in the WASP-23b system, constructed a
broad-band transmission spectrum of WASP-23b and performed a comparative
analysis with theoretical models of hot Jupiters. We observed a complete
transit of WASP-23b in seven bands simultaneously, using the GROND instrument
on the MPG/ESO 2.2m telescope at La Silla Observatory and telescope
defocussing. The optical data were taken in the Sloan g',r',i' and z' bands.
The resulting light curves are of high quality, with a root-mean-square scatter
of the residual as low as 330ppm in the z'-band, with a cadence of 90s.
Near-infrared data were obtained in the JHK bands. We performed MCMC analysis
of our photometry plus existing radial velocity data to refine measurements of
the ephemeris and physical properties of the WASP-23. We constructed a
broad-band transmission spectrum of WASP-23b and compared it with a theoretical
transmission spectrum of a Hot Jupiter. We measured the central transit time
with a precision about 8s. From this and earlier observations we obtain an
orbital period of P=2.9444300+/-0.0000011d. Our analysis also yielded a larger
radius and mass for the planet (Rp=1.067+0.045-0.038 RJup and,
Mp=0.917+0.040-0.039MJup). The transmission spectrum is marginally flat, given
the limited precision of the measurements for the planet radius and poor
spectral resolution of the data.Comment: 8 pages, 5 figures, accepted for publication in Astronomy &
Astrophysic
Very Low-Mass Objects in the Coronet Cluster: The Realm of the Transition Disks
We present optical and IR spectra of a set of low-mass stars and brown dwarfs
in the Coronet cluster (aged ~1Myr), obtained with the multifiber spectrograph
FLAMES/VLT and IRS/Spitzer. The optical spectra reveal spectral types between
M1 and M7.5, confirm the youth of the objects (via Li 6708 A absorption), and
show the presence of accretion (via Halpha) and shocks (via forbidden line
emission). The IRS spectra, together with IR photometry from the IRAC/MIPS
instruments on Spitzer and 2MASS, confirm the presence of IR excesses
characteristic of disks around ~70% of the objects. Half of the disks do not
exhibit any silicate emission, or present flat features characteristic of large
grains. The rest of the disks show silicate emission typical of amorphous and
crystalline silicate grains a few microns in size. About 50% of the objects
with disks do not show near-IR excess emission, having "transitional" disks,
according to their classical definition. This is a very high fraction for such
a young cluster. The large number of "transitional" disks suggests lifetimes
comparable to the lifetimes of typical optically thick disks. Therefore, these
disks may not be in a short-lived phase, intermediate between Class II and
Class III objects. The median spectral energy distribution of the disks in the
Coronet cluster is also closer to a flat disk than observed for the disks
around solar-type stars in regions with similar age. The differences in the
disk morphology and evolution in the Coronet cluster could be related to fact
that these objects have very late spectral types compared to the solar-type
stars in other cluster studies. Finally, the optical spectroscopy reveals that
one of the X-ray sources is produced by a Herbig Haro object in the cloud.Comment: 51 pages, 13 figures, 10 table
The Herschel/PACS view of disks around low-mass stars in Chamaleon-I
Circumstellar disks are expected to be the birthplaces of planets. The
potential for forming one or more planets of various masses is essentially
driven by the initial mass of the disks. We present and analyze Herschel/PACS
observations of disk-bearing M-type stars that belong to the young ~2 Myr old
Chamaleon-I star forming region. We used the radiative transfer code RADMC to
successfully model the SED of 17 M-type stars detected at PACS wavelengths. We
first discuss the relatively low detection rates of M5 and later spectral type
stars with respect to the PACS sensitivity, and argue their disks masses, or
flaring indices, are likely to be low. For M0 to M3 stars, we find a relatively
broad range of disk masses, scale heights, and flaring indices. Via a
parametrization of dust stratification, we can reproduce the peak fluxes of the
10 m emission feature observed with Spitzer/IRS, and find that disks
around M-type stars may display signs of dust sedimentation. The Herschel/PACS
observations of low-mass stars in Cha-I provide new constraints on their disk
properties, overall suggesting that disk parameters for early M-type stars are
comparable to those for more massive stars (e.g., comparable scale height and
flaring angles). However, regions of the disks emitting at about 100 m may
still be in the optically thick regime, preventing direct determination of disk
masses. Thus the modeled disk masses should be considered as lower limits.
Still, we are able to extend the wavelength coverage of SED models and start
characterizing effects such as dust sedimentation, an effort leading the way
towards ALMA observations of these low-mass stars
ATCA and Spitzer Observations of the Binary Protostellar Systems CG30 and BHR71
We present interferometric observations with resolution of ~3 arcsecs of the
isolated, low-mass protostellar double cores CG30 and BHR71 in the N2M_\odotSpitzerSpitzer$ observations, we construct spectral
energy distributions (SEDs) and derive temperatures and luminosities for all
cores. Based on the morphology and velocity structure, we suggest that the
sub-cores in CG30 were formed by initial fragmentation of a filamentary
prestellar core, while those in BHR71 could originate from rotational
fragmentation of a single collapsing protostellar core.Comment: 31 pages, 10 figures, to be published by ApJ in Sep. 200
Kepler-539: a young extrasolar system with two giant planets on wide orbits and in gravitational interaction
We confirm the planetary nature of Kepler-539b (aka Kepler object of interest
K00372.01), a giant transiting exoplanet orbiting a solar-analogue G2 V star.
The mass of Kepler-539b was accurately derived thanks to a series of precise
radial velocity measurements obtained with the CAFE spectrograph mounted on the
CAHA 2.2m telescope. A simultaneous fit of the radial-velocity data and Kepler
photometry revealed that Kepler-539b is a dense Jupiter-like planet with a mass
of Mp = 0.97 Mjup and a radius of Rp = 0.747 Rjup, making a complete circular
revolution around its parent star in 125.6 days. The semi-major axis of the
orbit is roughly 0.5 au, implying that the planet is at roughly 0.45 au from
the habitable zone. By analysing the mid-transit times of the 12 transit events
of Kepler-539b recorded by the Kepler spacecraft, we found a clear modulated
transit time variation (TTV), which is attributable to the presence of a planet
c in a wider orbit. The few timings available do not allow us to precisely
estimate the properties of Kepler-539c and our analysis suggests that it has a
mass between 1.2 and 3.6 Mjup, revolving on a very eccentric orbit (0.4<e<0.6)
with a period larger than 1000 days. The high eccentricity of planet c is the
probable cause of the TTV modulation of planet b. The analysis of the CAFE
spectra revealed a relatively high photospheric lithium content, A(Li)=2.48
dex, which, together with both a gyrochronological and isochronal analysis,
suggests that the parent star is relatively young.Comment: 11 pages, 14 figures, accepted for publication in Astronomy &
Astrophysic
Bistability patterns and nonlinear switching with very high contrast ratio in a 1550ânm quantum dash semiconductor laser
We report on the experimental observation of optical bistability (OB) and nonlinear switching (NS) in a nanostructure laser; specifically a 1550 nm quantum dash Fabry-Perot laser subject to external optical injection and operated in reflection. Different shapes of optical bistability and nonlinear switching, anticlockwise and clockwise, with very high on-off contrast ratio (up to 180:1) between output states were experimentally measured. These results added to the potential of nanostructure lasers for enhanced performance offer promise for use in fast all-optical signal processing applications in optical networks. © 2012 American Institute of Physics
Physical properties of the WASP-44 planetary system from simultaneous multi-colour photometry
We present ground-based broad-band photometry of two transits in the WASP-44
planetary system obtained simultaneously through four optical (Sloan g', r',
i', z') and three near-infrared (NIR; J, H, K) filters. We achieved low
scatters of 1-2 mmag per observation in the optical bands with a cadence of 48
s, but the NIR-band light curves present much greater scatter. We also observed
another transit of WASP-44 b by using a Gunn-r filter and telescope
defocussing, with a scatter of 0.37 mmag per point and an observing cadence
around 135 s. We used these data to improve measurements of the time of
mid-transit and the physical properties of the system. In particular, we
improved the radius measurements of the star and planet by factors of 3 and 4,
respectively. We find that the radius of WASP-44 b is 1.002 R_Jup, which is
slightly smaller than previously thought and differs from that expected for a
core-free planet. In addition, with the help of a synthetic spectrum, we
investigated the theoretically-predicted variation of the planetary radius as a
function of wavelength, covering the range 370-2440 nm. We can rule out extreme
variations at optical wavelengths, but unfortunately our data are not precise
enough (especially in the NIR bands) to differentiate between the theoretical
spectrum and a radius which does not change with wavelength.Comment: 13 pages, 6 figures, to appear in Monthly Notices of the Royal
Astronomical Societ
Eclipsing binaries and fast rotators in the Kepler sample. Characterization via radial velocity analysis from Calar Alto
The Kepler mission has provided high-accurate photometric data in a long time
span for more than two hundred thousands stars, looking for planetary transits.
Among the detected candidates, the planetary nature of around 15% has been
established or validated by different techniques. But additional data is needed
to characterize the rest of the candidates and reject other possible
configurations. We started a follow-up program to validate, confirm, and
characterize some of the planet candidates. In this paper we present the radial
velocity analysis (RV) of those presenting large variations, compatible with
being eclipsing binaries. We also study those showing large rotational
velocities, which prevents us from obtaining the necessary precision to detect
planetary-like objects. We present new RV results for 13 Kepler objects of
interest (KOIs) obtained with the CAFE spectrograph at the Calar Alto
Observatory, and analyze their high-spatial resolution images and the Kepler
light curves of some interesting cases. We have found five spectroscopic and
eclipsing binaries. Among them, the case of KOI-3853 is of particular interest.
This system is a new example of the so-called heartbeat stars, showing dynamic
tidal distortions in the Kepler light curve. We have also detected duration and
depth variations of the eclipse. We suggest possible scenarios to explain such
effect, including the presence of a third substellar body possibly detected in
our RV analysis. We also provide upper mass limits to the transiting companions
of other six KOIs with large rotational velocities. This property prevents the
RV method to obtain the necessary precision to detect planetary-like masses.
Finally, we analyze the large RV variations of other two KOIs, incompatible
with the presence of planetary-mass objects. These objects are likely to be
stellar binaries but a longer timespan is still needed.Comment: Accepted for publication in A&A. 18 pages, 9 figures, 17 tables. This
version fixes an error affecting the values of tables A.1-A.13. The text
remains unaltere
- âŠ