130 research outputs found
The effect of dexamethasone on defective nephrin transport caused by ER stress: A potential mechanism for the therapeutic action of glucocorticoids in the acquired glomerular diseases
The mechanism by which glucocorticoids govern antiproteinuric effect in nephrotic syndrome remains unknown. Present study examined the protective role of dexamethasone (DEX) in the intracellular trafficking of nephrin under endoplasmic reticulum (ER) stress. Human embryonic kidney-293 cell line expressing a full-length human nephrin was cultured in mediums containing 5.5 or 25 mM glucose with or without DEX. The result revealed that glucose starvation evoked a rapid ER stress leading to formation of underglycosylated nephrin that was remained in the ER as a complex with calreticulin/calnexin. DEX rescued this interfered trafficking through binding to its receptor and stimulating the mitochondrial transcripts and adenosine 5′ triphosphate (ATP) production, leading to synthesis of fully glycosylated nephrin. These results suggest that ER-stress in podocytes may cause alteration of nephrin N-glycosylation, which may be an underlying factor in the pathomechanism of the proteinuria in nephrotic syndrome. DEX may restore this imbalance by stimulating expression of mitochondrial genes, resulted in the production of ATP that is essential factor for proper folding machinery aided by the ER chaperones
Immunophenotypic subtyping of leukemic cells from Iranian patients with acute lymphoblastic leukaemia: Association to disease outcome
Background: Immunophenotypic characterization of the leukemic cells has been widely used as a tool for diagnosis, classification, stratification and prognosis of leukaemia. Objective: To investigate the immunophenotypic subtype profiles of Iranian patients with acute lymphoblastic leukemia (ALL) and its association to disease outcome. Methods: In this study, a total of 60 Iranian patients with ALL were immunophenotyped by flow cytometry using a panel of monoclonal antibodies specific for CD2, CD3, CD5, CD10, CD13, CD14, CD19, CD20, CD33, CD34, CD45, HLA-DR and TdT molecules. Results: The samples were initially categorized into T-ALL (n=9), B-ALL (n=50) and mixed lineage (n=1) based on the expression patterns of CD3 and CD19 molecules. B-ALL patients could further be classified into four subtypes, including Pro-B (n=7, 11.7), Pre-B I (n=28, 46.7), Pre-B II (n=13, 21.7) and immature/mature B cells (n=2, 3.3) on the basis of expression of CD10, CD19, CD20, HLA-DR and TdT. Clinical manifestations and laboratory findings of the patients did not reveal association with immunophenotypic subtypes of ALL, with the exception of mediastinal mass and WBC count at the time of diagnosis which were found to be significantly higher in patients with T-ALL compared with BALL (p=0.001 and 0.014), respectively. Conclusion: Our results indicate that overall the immunophenotypic profile of Iranian ALL patients is similar to previous reports and it might be used for monitoring of minimal residual disease and prognosis
Inhibitory Effect of Polyclonal Antibodies Against HER3 Extracellular Subdomains on Breast Cancer Cell Lines
OBJECTIVE: Human epidermal growth factor receptor 3 (HER3) is a unique member of the tyrosine kinase receptors with an inactive kinase domain and is the preferable dimerization partner for HER2 which lead to potent tumorigenic signaling. METHODS: In this study, the expression plasmids coding for the human HER3 subdomains were transfected into CHO-K1 cells. Produced proteins were characterized by ELISA and SDS-PAGE. Rabbits were immunized and produced polyclonal antibodies (pAbs) that were characterized by ELISA, Immunoblotting and flowcytometry and their inhibitory effects were assessed by XTT on BT-474 and JIMT-1 breast cancer cell lines. RESULT: The recombinant subdomains were highly immunogenic in rabbits. The pAbs reacted with the recombinant subdomains as well as commercial HER3 and the native receptor on tumor cell membranes and could significantly inhibit growth of Trastuzumab sensitive (BT-474) and resistant (JIMT-1) breast cancer cell lines in vitro. CONCLUSION: It seems that HER3 extra cellular domains (ECD) induce a strong anti-tumor antibody response and may prove to be potentially useful for immunotherapeutic applications.
Diet-Induced Muscle Insulin Resistance Is Associated With Extracellular Matrix Remodeling and Interaction With Integrin α2β1 in Mice
OBJECTIVE:
The hypothesis that high-fat (HF) feeding causes skeletal muscle extracellular matrix (ECM) remodeling in C57BL/6J mice and that this remodeling contributes to diet-induced muscle insulin resistance (IR) through the collagen receptor integrin α(2)β(1) was tested.
RESEARCH DESIGN AND METHODS:
The association between IR and ECM remodeling was studied in mice fed chow or HF diet. Specific genetic and pharmacological murine models were used to study effects of HF feeding on ECM in the absence of IR. The role of ECM-integrin interaction in IR was studied using hyperinsulinemic-euglycemic clamps on integrin α(2)β(1)-null (itga2(-/-)), integrin α(1)β(1)-null (itga1(-/-)), and wild-type littermate mice fed chow or HF. Integrin α(2)β(1) and integrin α(1)β(1) signaling pathways have opposing actions.
RESULTS:
HF-fed mice had IR and increased muscle collagen (Col) III and ColIV protein; the former was associated with increased transcript, whereas the latter was associated with reduced matrix metalloproteinase 9 activity. Rescue of muscle IR by genetic muscle-specific mitochondria-targeted catalase overexpression or by the phosphodiesterase 5a inhibitor, sildenafil, reversed HF feeding effects on ECM remodeling and increased muscle vascularity. Collagen remained elevated in HF-fed itga2(-/-) mice. Nevertheless, muscle insulin action and vascularity were increased. Muscle IR in HF-fed itga1(-/-) mice was unchanged. Insulin sensitivity in chow-fed itga1(-/-) and itga2(-/-) mice was not different from wild-type littermates.
CONCLUSIONS:
ECM collagen expansion is tightly associated with muscle IR. Studies with itga2(-/-) mice provide mechanistic insight for this association by showing that the link between muscle IR and increased collagen can be uncoupled by the absence of collagen-integrin α(2)β(1) interaction
Nephrin Is Expressed on the Surface of Insulin Vesicles and Facilitates Glucose-Stimulated Insulin Release
Nephrin, an immunoglobulin-like protein essential for the function of the glomerular podocyte and regulated in diabetic nephropathy, is also expressed in pancreatic beta-cells, where its function remains unknown. The aim of this study was to investigate whether diabetes modulates nephrin expression in human pancreatic islets and to explore the role of nephrin in beta-cell function.
Nephrin expression in human pancreas and in MIN6 insulinoma cells was studied by Western blot, PCR, confocal microscopy, subcellular fractionation, and immunogold labeling. Islets from diabetic (n = 5) and nondiabetic (n = 7) patients were compared. Stable transfection and siRNA knockdown in MIN-6 cells/human islets were used to study nephrin function in vitro and in vivo after transplantation in diabetic immunodeficient mice. Live imaging of green fluorescent protein (GFP)-nephrin-transfected cells was used to study nephrin endocytosis.
Nephrin was found at the plasma membrane and on insulin vesicles. Nephrin expression was decreased in islets from diabetic patients when compared with nondiabetic control subjects. Nephrin transfection in MIN-6 cells/pseudoislets resulted in higher glucose-stimulated insulin release in vitro and in vivo after transplantation into immunodeficient diabetic mice. Nephrin gene silencing abolished stimulated insulin release. Confocal imaging of GFP-nephrin-transfected cells revealed nephrin endocytosis upon glucose stimulation. Actin stabilization prevented nephrin trafficking as well as nephrin-positive effect on insulin release.
Our data suggest that nephrin is an active component of insulin vesicle machinery that may affect vesicle-actin interaction and mobilization to the plasma membrane. Development of drugs targeting nephrin may represent a novel approach to treat diabetes
Overexpression of orphan receptor tyrosine kinase Ror1 as a putative tumor-associated antigen in Iranian patients with acute lymphoblastic leukemia
Receptor tyrosine kinases (RTKs) are a group of enzymes involved in a variety of physiological and pathological processes. The human Ror1 is a member of the RTK family with unknown ligand and biological function. Overexpression of Ror1 has recently been reported in B-cell chronic lymphocytic leukemia. The aim of this study was to explore the expression profile of Ror1 in acute lymphoblastic leukemia (ALL) cells. Therefore, leukemic cells were isolated from the bone marrow and/or peripheral blood (PB) of 57 ALL patients. Immunophenotyping was performed by flow cytometry and mRNA expression was detected by RT-PCR. Overexpression of Ror1 mRNA was detected in 23 of 57 (40) ALL patients. A similar expression pattern was observed in ALL cell lines, with 4 of 12 (33) being positive. Stimulation of normal PB mononuclear cells with pokeweed mitogen and phorbol myristate acetate induced substantially higher Ror1 mRNA expression compared to unstimulated cultured cells. There has been neither a significant association between Ror1 expression and the immunophenotypic profile of the leukemic cells, nor with other clinical or hematological features of the patients. In conclusion, our findings propose Ror1 as a new tumor-associated antigen and a potential tool for targeted immunotherapy and monitoring of minimal residual disease in ALL. Copyright © 2008 S. Karger AG
Tendon Is Covered by a Basement Membrane Epithelium That Is Required for Cell Retention and the Prevention of Adhesion Formation
The ability of tendons to glide smoothly during muscle contraction is impaired after injury by fibrous adhesions that form between the damaged tendon surface and surrounding tissues. To understand how adhesions form we incubated excised tendons in fibrin gels (to mimic the homeostatic environment at the injury site) and assessed cell migration. We noticed cells exiting the tendon from only the cut ends. Furthermore, treatment of the tendon with trypsin resulted in cell extravagation from the shaft of the tendons. Electron microscopy and immunolocalisation studies showed that the tendons are covered by a novel cell layer in which a collagen type IV/laminin basement membrane (BM) overlies a keratinised epithelium. PCR and western blot analyses confirmed the expression of laminin β1 in surface cells, only. To evaluate the cell retentive properties of the BM in vivo we examined the tendons of the Col4a1+/Svc mouse that is heterozygous for a G-to-A transition in the Col4a1 gene that produces a G1064D substitution in the α1(IV) chain of collagen IV. The flexor tendons had a discontinuous BM, developed fibrous adhesions with overlying tissues, and were acellular at sites of adhesion formation. In further experiments, tenotomy of wild-type mice resulted in expression of laminin throughout the adhesion. In conclusion, we show the existence of a novel tendon BM-epithelium that is required to prevent adhesion formation. The Col4a1+/Svc mouse is an effective animal model for studying adhesion formation because of the presence of a structurally-defective collagen type IV-containing BM
rst Transcriptional Activity Influences kirre mRNA Concentration in the Drosophila Pupal Retina during the Final Steps of Ommatidial Patterning
Background: Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings: By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance: These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level
The role of molecular genetics in diagnosing familial hematuria(s)
Familial microscopic hematuria (MH) of glomerular origin represents a heterogeneous group of monogenic conditions involving several genes, some of which remain unknown. Recent advances have increased our understanding and our ability to use molecular genetics for diagnosing such patients, enabling us to study their clinical characteristics over time. Three collagen IV genes, COL4A3, COL4A4, and COL4A5 explain the autosomal and X-linked forms of Alport syndrome (AS), and a subset of thin basement membrane nephropathy (TBMN). A number of X-linked AS patients follow a milder course reminiscent of that of patients with heterozygous COL4A3/COL4A4 mutations and TBMN, while at the same time a significant subset of patients with TBMN and familial MH progress to chronic kidney disease (CKD) or end-stage kidney disease (ESKD). A mutation in CFHR5, a member of the complement factor H family of genes that regulate complement activation, was recently shown to cause isolated C3 glomerulopathy, presenting with MH in childhood and demonstrating a significant risk for CKD/ESKD after 40 years old. Through these results molecular genetics emerges as a powerful tool for a definite diagnosis when all the above conditions enter the differential diagnosis, while in many at-risk related family members, a molecular diagnosis may obviate the need for another renal biopsy
- …