1,128 research outputs found

    Nonlinear stochastic discrete drift-diffusion theory of charge fluctuations and domain relocation times in semiconductor superlattices

    Full text link
    A stochastic discrete drift-diffusion model is proposed to account for the effects of shot noise in weakly coupled, highly doped semiconductor superlattices. Their current-voltage characteristics consist of a number stable multistable branches corresponding to electric field profiles displaying two domains separated by a domain wall. If the initial state corresponds to a voltage on the middle of a stable branch and a sudden voltage is switched so that the final voltage corresponds to the next branch, the domains relocate after a certain delay time. Shot noise causes the distribution of delay times to change from a Gaussian to a first passage time distribution as the final voltage approaches that of the end of the first current branch. These results agree qualitatively with experiments by Rogozia {\it et al} (Phys. Rev. B {\bf 64}, 041308(R) (2001)).Comment: 9 pages, 12 figures, 2 column forma

    Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices

    Full text link
    Tunable oscillatory modes of electric-field domains in doped semiconductor superlattices are reported. The experimental investigations demonstrate the realization of tunable, GHz frequencies in GaAs-AlAs superlattices covering the temperature region from 5 to 300 K. The orgin of the tunable oscillatory modes is determined using an analytical and a numerical modeling of the dynamics of domain formation. Three different oscillatory modes are found. Their presence depends on the actual shape of the drift velocity curve, the doping density, the boundary condition, and the length of the superlattice. For most bias regions, the self-sustained oscillations are due to the formation, motion, and recycling of the domain boundary inside the superlattice. For some biases, the strengths of the low and high field domain change periodically in time with the domain boundary being pinned within a few quantum wells. The dependency of the frequency on the coupling leads to the prediction of a new type of tunable GHz oscillator based on semiconductor superlattices.Comment: Tex file (20 pages) and 16 postscript figure

    Fermion-fermion scattering in the Gross-Neveu model: a status report

    Get PDF
    Encouraged by the successful applications of L\"uscher's method to boson--boson scattering we discuss the possibility of extracting scattering phase shifts from finite--volume energies for fermion--fermion scattering in the Gross--Neveu model

    Remarks on the Configuration Space Approach to Spin-Statistics

    Full text link
    The angular momentum operators for a system of two spin-zero indistinguishable particles are constructed, using Isham's Canonical Group Quantization method. This mathematically rigorous method provides a hint at the correct definition of (total) angular momentum operators, for arbitrary spin, in a system of indistinguishable particles. The connection with other configuration space approaches to spin-statistics is discussed, as well as the relevance of the obtained results in view of a possible alternative proof of the spin-statistics theorem.Comment: 18 page

    Meson-meson scattering in the massive Schwinger model: a status report

    Get PDF
    We discuss the possibility of extracting phase shifts from finite volume energies for meson-meson scattering, where the mesons are fermion-antifermion bound states of the massive Schwinger model with SU(2) flavour symmetry. The existence of analytical strong coupling predictions for the mass spectrum and for the scattering phases makes it possible to test the reliability of numerical results

    Quantum-mechanical model of the Kerr-Newman black hole

    Get PDF
    We consider a Hamiltonian quantum theory of stationary spacetimes containing a Kerr-Newman black hole. The physical phase space of such spacetimes is just six-dimensional, and it is spanned by the mass MM, the electric charge QQ and angular momentum JJ of the hole, together with the corresponding canonical momenta. In this six-dimensional phase space we perform a canonical transformation such that the resulting configuration variables describe the dynamical properties of Kerr-Newman black holes in a natural manner. The classical Hamiltonian written in terms of these variables and their conjugate momenta is replaced by the corresponding self-adjoint Hamiltonian operator and an eigenvalue equation for the Arnowitt-Deser-Misner (ADM) mass of the hole, from the point of view of a distant observer at rest, is obtained. In a certain very restricted sense, this eigenvalue equation may be viewed as a sort of "Schr\"odinger equation of black holes". Our "Schr\"odinger equation" implies that the ADM mass, electric charge and angular momentum spectra of black holes are discrete, and the mass spectrum is bounded from below. Moreover, the spectrum of the quantity M2Q2a2M^2-Q^2-a^2, where aa is the angular momentum per unit mass of the hole, is strictly positive when an appropriate self-adjoint extension is chosen. The WKB analysis yields the result that the large eigenvalues of MM, QQ and aa are of the form 2n\sqrt{2n}, where nn is an integer. It turns out that this result is closely related to Bekenstein's proposal on the discrete horizon area spectrum of black holes.Comment: 30 pages, 3 figures, RevTe

    Macbeth

    Get PDF
    analysis done 1998, revised 2002. Some scenes I would now characterise as extrusionsand I would switch Lady Macbeth's entrance in 2.2 to the inwards door. Despite Banquo's references in 2.1 that would place her elsewhere than Duncan's chambers, she now suddenly appears from there, having 'laid their daggers ready' (2.2.11). A surprise re-entrance as in Antony and Cleopatra 1.2

    Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices

    Full text link
    We review the occurrence of electric-field domains in doped superlattices within a discrete drift model. A complete analysis of the construction and stability of stationary field profiles having two domains is carried out. As a consequence, we can provide a simple analytical estimation for the doping density above which stable stable domains occur. This bound may be useful for the design of superlattices exhibiting self-sustained current oscillations. Furthermore we explain why stable domains occur in superlattices in contrast to the usual Gunn diode.Comment: Tex file and 3 postscript figure

    Gauge Theory of the String Geodesic Field

    Full text link
    A relativistic string is usually represented by the Nambu-Goto action in terms of the extremal area of a 2-dimensional timelike submanifold of Minkowski space. Alternatively, a family of classical solutions of the string equation of motion can be globally described in terms of the associated geodesic field. In this paper we propose a new gauge theory for the geodesic field of closed and open strings. Our approach solves the technical and conceptual problems affecting previous attempts to describe strings in terms of local field variables. The connection between the geodesic field, the string current and the Kalb-Ramond gauge potential is discussed and clarified. A non-abelian generalization and the generally covariant form of the model are also discussed.Comment: 38 pages, PHYZZX, UTS-DFT-92-2

    Building blocks of a black hole

    Get PDF
    What is the nature of the energy spectrum of a black hole ? The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As stressed long ago by by Mukhanov, such eigenvalues must be exponentially degenerate with respect to the area quantum number if one is to understand black hole entropy as reflecting degeneracy of the observable states. Here we construct the black hole states by means of a pair of "creation operators" subject to a particular simple algebra, a slight generalization of that for the harmonic oscillator. We then prove rigorously that the n-th area eigenvalue is exactly 2 raised to the n-fold degenerate. Thus black hole entropy qua logarithm of the number of states for fixed horizon area comes out proportional to that area.Comment: PhysRevTeX, 14 page
    corecore