1,149 research outputs found
Ultrafast spin dynamics and critical behavior in half-metallic ferromagnet : Sr_2FeMoO_6
Ultrafast spin dynamics in ferromagnetic half-metallic compound Sr_2FeMoO_6
is investigated by pump-probe measurements of magneto-optical Kerr effect.
Half-metallic nature of this material gives rise to anomalous thermal
insulation between spins and electrons, and allows us to pursue the spin
dynamics from a few to several hundred picoseconds after the optical
excitation. The optically detected magnetization dynamics clearly shows the
crossover from microscopic photoinduced demagnetization to macroscopic critical
behavior with universal power law divergence of relaxation time for wide
dynamical critical region.Comment: 14 pages, 4 figures. Abstract and Figures 1 & 3 are correcte
Nonlocal magnon-polaron transport in yttrium iron garnet
The spin Seebeck effect (SSE) is observed in magnetic insulator|heavy metal
bilayers as an inverse spin Hall effect voltage under a temperature gradient.
The SSE can be detected nonlocally as well, viz. in terms of the voltage in a
second metallic contact (detector) on the magnetic film, spatially separated
from the first contact that is used to apply the temperature bias (injector).
Magnon-polarons are hybridized lattice and spin waves in magnetic materials,
generated by the magnetoelastic interaction. Kikkawa et al. [Phys. Rev. Lett.
\textbf{117}, 207203 (2016)] interpreted a resonant enhancement of the local
SSE in yttrium iron garnet (YIG) as a function of the magnetic field in terms
of magnon-polaron formation. Here we report the observation of magnon-polarons
in \emph{nonlocal} magnon spin injection/detection devices for various
injector-detector spacings and sample temperatures. Unexpectedly, we find that
the magnon-polaron resonances can suppress rather than enhance the nonlocal
SSE. Using finite element modelling we explain our observations as a
competition between the SSE and spin diffusion in YIG. These results give
unprecedented insights into the magnon-phonon interaction in a key magnetic
material.Comment: 5 pages, 6 figure
Nested T-duality
We identify the obstructions for T-dualizing the boundary WZW model and make
explicit how they depend on the geometry of branes. In particular, the
obstructions disappear for certain brane configurations associated to
non-regular elements of the Cartan torus. It is shown in this case that the
boundary WZW model is "nested" in the twisted boundary WZW model as the
dynamical subsystem of the latter.Comment: 13 page
Fabrication and Characterization of Modulation-Doped ZnSe/(Zn,Cd)Se (110) Quantum Wells: A New System for Spin Coherence Studies
We describe the growth of modulation-doped ZnSe/(Zn,Cd)Se quantum wells on
(110) GaAs substrates. Unlike the well-known protocol for the epitaxy of
ZnSe-based quantum structures on (001) GaAs, we find that the fabrication of
quantum well structures on (110) GaAs requires significantly different growth
conditions and sample architecture. We use magnetotransport measurements to
confirm the formation of a two-dimensional electron gas in these samples, and
then measure transverse electron spin relaxation times using time-resolved
Faraday rotation. In contrast to expectations based upon known spin relaxation
mechanisms, we find surprisingly little difference between the spin lifetimes
in these (110)-oriented samples in comparison with (100)-oriented control
samples.Comment: To appear in Journal of Superconductivity (Proceedings of 3rd
Conference on Physics and Applications of Spin-dependent Phenomena in
Semiconductors
Evidence for mass renormalization in LaNiO$"" sub 3_: an in situ soft x-ray photoemission study of epitaxial films
We investigate the electronic structure of high-quality single-crystal
LaNiO (LNO) thin films using in situ photoemission spectroscopy (PES). The
in situ high-resolution soft x-ray PES measurements on epitaxial thin films
reveal the intrinsic electronic structure of LNO. We find a new sharp feature
in the PES spectra crossing the Fermi level, which is derived from the
correlated Ni 3 electrons. This feature shows significant enhancement
of spectral weight with decreasing temperature. From a detailed analysis of
resistivity data, the enhancement of spectral weight is attributed to
increasing electron correlations due to antiferromagnetic fluctuations.Comment: 4 pages, 4 figures. submitted to Phys. Rev.
Spontaneous compactification and nonassociativity
We consider the Freund-Rubin-Englert mechanism of compactification of N=1
supergravity in 11 dimensions. We systematically investigate both well-known
and some new solutions of the classical equations of motion in 11 dimensions.
In particular, we show that any threeform potential in 11 dimension is given
locally by the structure constants of a geodesic loop in an affinely connected
space.Comment: 17 pages, LaTeX, no figure
Longitudinal spin transport in diluted magnetic semiconductor superlattices: the effect of the giant Zeeman splitting
Longitudinal spin transport in diluted magnetic semiconductor superlattices
is investigated theoretically. The longitudinal magnetoconductivity (MC) in
such systems exhibits an oscillating behavior as function of an external
magnetic field. In the weak magnetic field region the giant Zeeman splitting
plays a dominant role which leads to a large negative magnetoconductivity. In
the strong magnetic field region the MC exhibits deep dips with increasing
magnetic field. The oscillating behavior is attributed to the interplay between
the discrete Landau levels and the Fermi surface. The decrease of the MC at low
magnetic field is caused by the exchange interaction between the electron
in the conduction band and the magnetic ions.Comment: 6 pages, 9 figures, submitted to Phys. Rev.
- …