12,990 research outputs found
Strong Tunneling in Double-Island Structures
We study the electron transport through a system of two low-capacitance metal
islands connected in series between two electrodes. The work is motivated in
part by experiments on semiconducting double-dots, which show intriguing
effects arising from coherent tunneling of electrons and mixing of the
single-electron states across tunneling barriers. In this article, we show how
coherent tunneling affects metallic systems and leads to a mixing of the
macroscopic charge states across the barriers. We apply a recently formulated
RG approach to examine the linear response of the system with high tunnel
conductances (up to 8e^2/h). In addition we calculate the (second order)
cotunneling contributions to the non-linear conductance. Our main results are
that the peaks in the linear and nonlinear conductance as a function of the
gate voltage are reduced and broadened in an asymmetric way, as well as shifted
in their positions. In the limit where the two islands are coupled weakly to
the electrodes, we compare to theoretical results obtained by Golden and
Halperin and Matveev et al. In the opposite case when the two islands are
coupled more strongly to the leads than to each other, the peaks are found to
shift, in qualitative agreement with the recent prediction of Andrei et al. for
a similar double-dot system which exhibits a phase transition.Comment: 12 page
Super-poissonian noise, negative differential conductance, and relaxation effects in transport through molecules, quantum dots and nanotubes
We consider charge transport through a nanoscopic object, e.g. single
molecules, short nanotubes, or quantum dots, that is weakly coupled to metallic
electrodes. We account for several levels of the molecule/quantum dot with
level-dependent coupling strengths, and allow for relaxation of the excited
states. The current-voltage characteristics as well as the current noise are
calculated within first-order perturbation expansion in the coupling strengths.
For the case of asymmetric coupling to the leads we predict
negative-differential-conductance accompanied with super-poissonian noise. Both
effects are destroyed by fast relaxation processes. The non-monotonic behavior
of the shot noise as a function of bias and relaxation rate reflects the
details of the electronic structure and level-dependent coupling strengths.Comment: 8 pages, 7 figures, submitted to Phys. Rev. B, added reference
Tunable dynamical channel blockade in double-dot Aharonov-Bohm interferometers
We study electronic transport through an Aharonov-Bohm interferometer with
single-level quantum dots embedded in the two arms. The full counting
statistics in the shot-noise regime is calculated to first order in the
tunnel-coupling strength. The interplay of interference and charging energy in
the dots leads to a dynamical channel blockade that is tunable by the magnetic
flux penetrating the Aharonov-Bohm ring. We find super-Poissonian behavior with
diverging second and higher cumulants when the Aharonov-Bohm flux approaches an
integer multiple of the flux quantum.Comment: published version, 10 pages, 10 figure
Influence of spin waves on transport through a quantum-dot spin valve
We study the influence of spin waves on transport through a single-level
quantum dot weakly coupled to ferromagnetic electrodes with noncollinear
magnetizations. Side peaks appear in the differential conductance due to
emission and absorption of spin waves. We, furthermore, investigate the
nonequilibrium magnon distributions generated in the source and drain lead. In
addition, we show how magnon-assisted tunneling can generate a fullly
spin-polarized current without an applied transport voltage. We discuss the
influence of spin waves on the current noise. Finally, we show how the magnonic
contributions to the exchange field can be detected in the finite-frequency
Fano factor.Comment: published version, 15 pages, 10 figure
- …