37,902 research outputs found

    Resource Letter: Gravitational Lensing

    Full text link
    This Resource Letter provides a guide to a selection of the literature on gravitational lensing and its applications. Journal articles, books, popular articles, and websites are cited for the following topics: foundations of gravitational lensing, foundations of cosmology, history of gravitational lensing, strong lensing, weak lensing, and microlensing.Comment: Resource Letter, 2012, in press (http://ajp.dickinson.edu/Readers/resLetters.html); 21 pages, no figures; diigo version available at http://groups.diigo.com/group/gravitational-lensin

    Discovery of a Second Millisecond Accreting Pulsar: XTE J1751-305

    Get PDF
    We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f_x = (1.278 +/- 0.003) x 10^{-6} M_sun, yields a minimum mass for the companion of between 0.013 and 0.017 M_sun, depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30-85 deg, and the companion mass to be 0.013-0.035 M_sun. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.Comment: Astrophysical Journal Letters, Accepted, (AASTeX

    A Dynamical Analysis of the Proposed Circumbinary HW Virginis Planetary System

    Get PDF
    In 2009, the discovery of two planets orbiting the evolved binary star system HW Virginis was announced, based on systematic variations in the timing of eclipses between the two stars. The planets invoked in that work were significantly more massive than Jupiter, and moved on orbits that were mutually crossing - an architecture which suggests that mutual encounters and strong gravitational interactions are almost guaranteed. In this work, we perform a highly detailed analysis of the proposed HW Vir planetary system. First, we consider the dynamical stability of the system as proposed in the discovery work. Through a mapping process involving 91,125 individual simulations, we find that the system is so unstable that the planets proposed simply cannot exist, due to mean lifetimes of less than a thousand years across the whole parameter space. We then present a detailed re-analysis of the observational data on HW Vir, deriving a new orbital solution that provides a very good fit to the observational data. Our new analysis yields a system with planets more widely spaced, and of lower mass, than that proposed in the discovery work, and yields a significantly greater (and more realistic) estimate of the uncertainty in the orbit of the outermost body. Despite this, a detailed dynamical analysis of this new solution similarly reveals that it also requires the planets to move on orbits that are simply not dynamically feasible. Our results imply that some mechanism other than the influence of planetary companions must be the principal cause of the observed eclipse timing variations for HW Vir. If the sys- tem does host exoplanets, they must move on orbits differing greatly from those previously proposed. Our results illustrate the critical importance of performing dynamical analyses as a part of the discovery process for multiple-planet exoplanetary systems.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Phosphate applications affect the coumestrol level of medics

    Get PDF
    Western Australia has a million acres of medics including various cultivars of barrel medic, Medicago truncatula, and strand medic, M. littoralis. Both species contain coumestrol, a chemical thought to have caused delayed conception and reduced twinning rates among grazing ewes in New Zealand. No infertility has been reported among ewes grazing medic pastures in Western Australia, but coumestrol levels in both species have often been high enough to suggest the possibility of oestrogenic responses among sheep grazing them

    The Nature of Deeply Buried Ultraluminous Infrared Galaxies: A Unified Model for Highly Obscured Dusty Galaxy Emission

    Get PDF
    We present models of deeply buried ultraluminous infrared galaxy (ULIRG) spectral energy distributions (SEDs) and use them to construct a three-dimensional diagram for diagnosing the nature of observed ULIRGs. Our goal is to construct a suite of SEDs for a very simple model ULIRG structure, and to explore how well this simple model can (by itself) explain the full range of observed ULIRG properties. We use our diagnostic to analyze archival Spitzer Space Telescope IRS spectra of ULIRGs and find that: (1) In general, our model does provide a comprehensive explanation of the distribution of mid-IR ULIRG properties; (2) >75% (in some cases 100%) of the bolometric luminosities of the most deeply buried ULIRGs must be powered by a dust-enshrouded active galactic nucleus; (3) an unobscured "keyhole" view through <~10% of the obscuring medium surrounding a deeply buried ULIRG is sufficient to make it appear nearly unobscured in the mid-IR; and (4) the observed absence of deeply buried ULIRGs with large PAH equivalent widths is naturally explained by our models showing that deep absorption features are "filled-in" by small quantities of foreground unobscured PAH emission (e.g., from the host galaxy disk) at the level of ~1% the bolometric nuclear luminosity. The modeling and analysis we present will also serve as a powerful tool for interpreting the high angular resolution spectra of high-redshift sources to be obtained with the James Webb Space Telescope.Comment: 20 pages, 14 figures. Accepted for publication in the Ap
    • …
    corecore