2 research outputs found
Weakly frustrated two-dimensional Heisenberg antiferromagnets: thermodynamic properties from a non-perturbative approach
We analyze the thermodynamic properties of the spin-S two-dimensional quantum
Heisenberg antiferromagnet on a square lattice with nearest and next-nearest
neighbor couplings in the Neel phase (J_2/J_1<0.4) employing the quantum
hierarchical reference theory (QHRT), a non-perturbative implementation of the
renormalization group method to quantum systems. We investigate the staggered
susceptibility, the structure factors and the correlation length at finite
temperature and for different values of the frustration ratio. From the finite
temperature results, we also extrapolate ground state properties, such as spin
stiffness and spontaneous staggered magnetization, providing an estimate of the
extent of quantum corrections. The behavior of these quantities as a function
of frustration may provide some hint on the breakdown of the Neel phase at zero
temperature for larger values of J_2