1,566 research outputs found
The impact of freight transport capacity limitations on supply chain dynamics
We investigate how capacity limitations in the transportation system affect the dynamic behaviour of supply chains. We are interested in the more recently defined, 'backlash' effect. Using a system dynamics simulation approach, we replicate the well-known Beer Game supply chain for different transport capacity management scenarios. The results indicate that transport capacity limitations negatively impact on inventory and backlog costs, although there is a positive impact on the 'backlash' effect. We show that it is possible for both backlog and inventory to simultaneous occur, a situation which does not arise with the uncapacitated scenario. A vertical collaborative approach to transport provision is able to overcome such a trade-off. © 2013 Taylor & Francis
Anomalous phonon behavior in the high temperature shape memory alloy: TiPd:Cr
Ti50 Pd50-xCrx is a high temperature shape memory alloy with a martensitic
transformation temperature strongly dependent on the Cr composition. Prior to
the transformation a premartensitic phase is present with an incommensurate
modulated cubic lattice with wave vector of q0=(0.22, 0.22, 0). The temperature
dependence of the diffuse scattering in the cubic phase is measured as a
function temperature for x=6.5, 8.5, and 10 at. %. The lattice dynamics has
been studied and reveals anomalous temperature and q-dependence of the
[110]-TA2 transverse phonon branch. The phonon linewidth is broad over the
entire Brillouin zone and increases with decreasing temperature, contrary to
the behavior expected for anharmonicity. No anomaly is observed at q0. The
results are compared with first principles calculation of the phonon structure.Comment: 26 pages, 11 figure
Recommended from our members
PROTEOLYTIC REMOVAL OF THE CARBOXYL TERMINUS OF THE T4 GENE 32 HELIX-DESTABILIZING PROTEIN ALTERS THE T4 IN VITRO REPLICATION COMPLEX
The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. (1) Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32*I protein for this synthesis. (2) Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. (3) Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. (4) The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3{prime}-OH end of a polynucleotide chain and are thereby inhibited. Eukaryotic helix-destabilizing proteins may also have similar functional domains essential for the control of their activities
Homogenization in magnetic-shape-memory polymer composites
Magnetic-shape-memory materials (e.g. specific NiMnGa alloys) react with a
large change of shape to the presence of an external magnetic field. As an
alternative for the difficult to manifacture single crystal of these alloys we
study composite materials in which small magnetic-shape-memory particles are
embedded in a polymer matrix. The macroscopic properties of the composite
depend strongly on the geometry of the microstructure and on the
characteristics of the particles and the polymer.
We present a variational model based on micromagnetism and elasticity, and
derive via homogenization an effective macroscopic model under the assumption
that the microstructure is periodic. We then study numerically the resulting
cell problem, and discuss the effect of the microstructure on the macroscopic
material behavior. Our results may be used to optimize the shape of the
particles and the microstructure.Comment: 17 pages, 4 figure
Magnetic properties and magnetostructural phase transitions in Ni2+xMn1-xGa shape memory alloys
A systematic study of magnetic properties of Ni2+xMn1-xGa (0 \le x \le 0.19)
Heusler alloys undergoing structural martensite-austenite transformations while
in ferromagnetic state has been performed. From measurements of spontaneous
magnetization, Ms(T), jumps \Delta M at structural phase transitions were
determined. Virtual Curie temperatures of the martensite were estimated from
the comparison of magnetization in martensitic and austenitic phases. Both
saturation magnetic moments in ferromagnetic state and effective magnetic
moments in paramagnetic state of Mn and Ni atoms were estimated and the
influence of delocalization effects on magnetism in these alloys was discussed.
The experimental results obtained show that the shift of martensitic transition
temperature depends weakly on composition. The values of this shift are in good
correspondence with Clapeyron-Clausius formalism taking into account the
experimental data on latent heat at martensite-austenite transformations.Comment: 7 pages, 8 figure
Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise.
Sprint interval exercise improves several health markers but the appetite and energy balance response is unknown. This study compared the effects of sprint interval and endurance exercise on appetite, energy intake and gut hormone responses. Twelve healthy males [mean (SD): age 23 (3) years, body mass index 24.2 (2.9) kg m(-2), maximum oxygen uptake 46.3 (10.2) mL kg(-1) min(-1)] completed three 8 h trials [control (CON), endurance exercise (END), sprint interval exercise (SIE)] separated by 1 week. Trials commenced upon completion of a standardised breakfast. Sixty minutes of cycling at 68.1 (4.3) % of maximum oxygen uptake was performed from 1.75-2.75 h in END. Six 30-s Wingate tests were performed from 2.25-2.75 h in SIE. Appetite ratings, acylated ghrelin and peptide YY (PYY) concentrations were measured throughout each trial. Food intake was monitored from buffet meals at 3.5 and 7 h and an overnight food bag. Appetite (P 0.05). Therefore, relative energy intake (energy intake minus the net energy expenditure of exercise) was lower in END than that in CON (15.7 %; P = 0.006) and SIE (11.5 %; P = 0.082). An acute bout of endurance exercise resulted in lower appetite perceptions in the hours after exercise than sprint interval exercise and induced a greater 24 h energy deficit due to higher energy expenditure during exercise
Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions.
This study investigated the effects of continuous moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) in combination with short exposure to hypoxia on appetite and plasma concentrations of acylated ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Twelve healthy males completed four, 2.6 h trials in a random order: 1) MIE-normoxia, 2) MIE-hypoxia, 3) HIIE-normoxia, and 4) HIIE-hypoxia. Exercise took place in an environmental chamber. During MIE, participants ran for 50 min at 70% of altitude-specific maximal oxygen uptake ( 2max) and during HIIE performed 6 x 3 min running at 90% 2max interspersed with 6 x 3 min active recovery at 50% 2max with a 7 min warm-up and cool-down at 70% 2max (50 min total). In hypoxic trials, exercise was performed at a simulated altitude of 2,980 m (14.5% O2). Exercise was completed after a standardised breakfast. A second meal standardised to 30% of participants’ daily energy requirements was provided 45 min after exercise. Appetite was suppressed more in hypoxia than normoxia during exercise, post-exercise, and for the full 2.6 h trial period (linear mixed modelling, p 0.05). These findings demonstrate that short exposure to hypoxia causes suppressions in appetite and plasma acylated ghrelin concentrations. Furthermore, appetite responses to exercise do not appear to be influenced by exercise modality
Bounds on the tau and muon neutrino vector and axial vector charge radius
A Majorana neutrino is characterized by just one flavor diagonal
electromagnetic form factor: the anapole moment, that in the static limit
corresponds to the axial vector charge radius . Experimental information
on this quantity is scarce, especially in the case of the tau neutrino. We
present a comprehensive analysis of the available data on the single photon
production process off Z-resonance, and we
discuss the constraints that these measurements can set on for the tau
neutrino. We also derive limits for the Dirac case, when the presence of a
vector charge radius is allowed. Finally, we comment on additional
experimental data on scattering from the NuTeV, E734, CCFR and
CHARM-II collaborations, and estimate the limits implied for and
for the muon neutrino.Comment: 20 pages, 2 eps figures. CCFR data included in the analysis.
Conclusion unchange
Constraint Generation Algorithm for the Minimum Connectivity Inference Problem
Given a hypergraph , the Minimum Connectivity Inference problem asks for a
graph on the same vertex set as with the minimum number of edges such that
the subgraph induced by every hyperedge of is connected. This problem has
received a lot of attention these recent years, both from a theoretical and
practical perspective, leading to several implemented approximation, greedy and
heuristic algorithms. Concerning exact algorithms, only Mixed Integer Linear
Programming (MILP) formulations have been experimented, all representing
connectivity constraints by the means of graph flows. In this work, we
investigate the efficiency of a constraint generation algorithm, where we
iteratively add cut constraints to a simple ILP until a feasible (and optimal)
solution is found. It turns out that our method is faster than the previous
best flow-based MILP algorithm on random generated instances, which suggests
that a constraint generation approach might be also useful for other
optimization problems dealing with connectivity constraints. At last, we
present the results of an enumeration algorithm for the problem.Comment: 16 pages, 4 tables, 1 figur
- …