235 research outputs found

    Mens, organisatie en de kwaliteit van informatie

    Get PDF

    Intermittency and the Slow Approach to Kolmogorov Scaling

    Get PDF
    From a simple path integral involving a variable volatility in the velocity differences, we obtain velocity probability density functions with exponential tails, resembling those observed in fully developed turbulence. The model yields realistic scaling exponents and structure functions satisfying extended self-similarity. But there is an additional small scale dependence for quantities in the inertial range, which is linked to a slow approach to Kolmogorov (1941) scaling occurring in the large distance limit.Comment: 10 pages, 5 figures, minor changes to mirror version to appear in PR

    Monitoring ethnic minorities in the Netherlands

    Get PDF
    Item does not contain fulltextThe article first summarises the history of ethnic minority policy in the Netherlands and the development of the ‘ethnic minority’ and ‘allochthonous’ categories, which are peculiar in comparative perspective in emphasising socio-economic disadvantage as a constitutive dimension of minority status and in setting the minority question within the broader Dutch political principle of ‘pillarisation’. The article then examines the use of statistics in public policy, in a context where the national census has been discontinued since 1971, focusing more specifically on the case of education, where major statistical efforts have been devoted to identifying patterns of disadvantage and integration. Finally, the article briefly examines current debates on the situation of ethnic minorities in the Netherlands in the context of growing questioning of established Dutch models of minority policy.13 p

    Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes

    Get PDF
    DOI:10.1787/011766488208This global screening study makes a first estimate of the exposure of the world's large port cities to coastal flooding due to storm surge and damage due to high winds. This assessment also investigates how climate change is likely to impact each port city's exposure to coastal flooding by the 2070s, alongside subsidence and population growth and urbanisation. The study provides a much more comprehensive analysis than earlier assessments, focusing on the 136 port cities around the world that have more than one million inhabitants in 2005. The analysis demonstrates that a large number of people are already exposed to coastal flooding in large port cities. Across all cities, about 40 million people (0.6% of the global population or roughly 1 in 10 of the total port city population in the cities considered here) are exposed to a 1 in 100 year coastal flood event. For present-day conditions (2005), the top ten cities in terms of exposed population are estimated to be Mumbai, Guangzhou, Shanghai, Miami, Ho Chi Minh City, Kolkata, Greater New York, Osaka-Kobe, Alexandria and New Orleans; almost equally split between developed and developing countries. When assets are considered, the current distribution becomes more heavily weighted towards developed countries, as the wealth of the cities becomes important. The top 10 cities in terms of assets exposed are Miami, Greater New York, New Orleans, Osaka-Kobe, Tokyo, Amsterdam, Rotterdam, Nagoya, Tampa-St Petersburg and Virginia Beach. These cities contain 60% of the total exposure, but are from only three (wealthy) countries: USA, Japan and the Netherlands. The total value of assets exposed in 2005 is across all cities considered here is estimated to be US3,000 billion; corresponding to around 5% of global GDP in 2005 (both measured in international USD)... Available at : http://www.oecd-ilibrary.org/environment/ranking-port-cities-with-high-exposure-and-vulnerability-to-climate-extremes_01176648820

    Dynamical Organization around Turbulent Bursts

    Full text link
    The detailed dynamics around intermittency bursts is investigated in turbulent shell models. We observe that the amplitude of the high wave number velocity modes vanishes before each burst, meaning that the fixed point in zero and not the Kolmogorov fixed point determines the intermittency. The phases of the field organize during the burst, and after a burst the field oscillates back to the laminar level. We explain this behavior from the variations in the values of the dissipation and the advection around the zero fixed point.Comment: 4 pages, REVTex, 3 figures in one ps-fil

    Statistics of Dissipation and Enstrophy Induced by a Set of Burgers Vortices

    Full text link
    Dissipation and enstropy statistics are calculated for an ensemble of modified Burgers vortices in equilibrium under uniform straining. Different best-fit, finite-range scaling exponents are found for locally-averaged dissipation and enstrophy, in agreement with existing numerical simulations and experiments. However, the ratios of dissipation and enstropy moments supported by axisymmetric vortices of any profile are finite. Therefore the asymptotic scaling exponents for dissipation and enstrophy induced by such vortices are equal in the limit of infinite Reynolds number.Comment: Revtex (4 pages) with 4 postscript figures included via psfi

    Inertial- and Dissipation-Range Asymptotics in Fluid Turbulence

    Full text link
    We propose and verify a wave-vector-space version of generalized extended self similarity and broaden its applicability to uncover intriguing, universal scaling in the far dissipation range by computing high-order (\leq 20\/) structure functions numerically for: (1) the three-dimensional, incompressible Navier Stokes equation (with and without hyperviscosity); and (2) the GOY shell model for turbulence. Also, in case (2), with Taylor-microscale Reynolds numbers 4 \times 10^{4} \leq Re_{\lambda} \leq 3 \times 10^{6}\/, we find that the inertial-range exponents (\zeta_{p}\/) of the order - p\/ structure functions do not approach their Kolmogorov value p/3\/ as Re_{\lambda}\/ increases.Comment: RevTeX file, with six postscript figures. epsf.tex macro is used for figure insertion. Packaged using the 'uufiles' utilit

    Exact Resummations in the Theory of Hydrodynamic Turbulence: III. Scenarios for Anomalous Scaling and Intermittency

    Full text link
    Elements of the analytic structure of anomalous scaling and intermittency in fully developed hydrodynamic turbulence are described. We focus here on the structure functions of velocity differences that satisfy inertial range scaling laws Sn(R)RζnS_n(R)\sim R^{\zeta_n}, and the correlation of energy dissipation Kϵϵ(R)RμK_{\epsilon\epsilon}(R) \sim R^{-\mu}. The goal is to understand the exponents ζn\zeta_n and μ\mu from first principles. In paper II of this series it was shown that the existence of an ultraviolet scale (the dissipation scale η\eta) is associated with a spectrum of anomalous exponents that characterize the ultraviolet divergences of correlations of gradient fields. The leading scaling exponent in this family was denoted Δ\Delta. The exact resummation of ladder diagrams resulted in the calculation of Δ\Delta which satisfies the scaling relation Δ=2ζ2\Delta=2-\zeta_2. In this paper we continue our analysis and show that nonperturbative effects may introduce multiscaling (i.e. ζn\zeta_n not being linear in nn) with the renormalization scale being the infrared outer scale of turbulence LL. It is shown that deviations from K41 scaling of Sn(R)S_n(R) (ζnn/3\zeta_n\neq n/3) must appear if the correlation of dissipation is mixing (i.e. μ>0\mu>0). We derive an exact scaling relation μ=2ζ2ζ4\mu = 2\zeta_2-\zeta_4. We present analytic expressions for ζn\zeta_n for all nn and discuss their relation to experimental data. One surprising prediction is that the time decay constant τn(R)Rzn\tau_n(R)\propto R^{z_n} of Sn(R)S_n(R) scales independently of nn: the dynamic scaling exponent znz_n is the same for all nn-order quantities, zn=ζ2z_n=\zeta_2.Comment: PRE submitted, 22 pages + 11 figures, REVTeX. The Eps files of figures will be FTPed by request to [email protected]
    corecore