5,794 research outputs found

    Constrained Dynamics of Universally Coupled Massive Spin 2-spin 0 Gravities

    Full text link
    The 2-parameter family of massive variants of Einstein's gravity (on a Minkowski background) found by Ogievetsky and Polubarinov by excluding lower spins can also be derived using universal coupling. A Dirac-Bergmann constrained dynamics analysis seems not to have been presented for these theories, the Freund-Maheshwari-Schonberg special case, or any other massive gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here the Dirac-Bergmann apparatus is applied to these theories. A few remarks are made on the question of positive energy. Being bimetric, massive gravities have a causality puzzle, but it appears soluble by the introduction and judicious use of gauge freedom.Comment: 6 pages; Talk given at QG05, Cala Gonone (Italy), September 200

    CONCEPTUAL DESIGN OF A 2000 kW NUCLEAR HEAT SOURCE SUITABLE FOR SPACE ELECTRIC POWER.

    Full text link
    A conceptual design of a 2000 kW/sub/t Rankine system for nuclear-electric space power is described. The system includes a unique reactor-boiler unit operating at 1500°K that utilizes heatpipes in lieu of a conventionally pump primary loop. An efficient heatpipe radiator rejects waste hea at 1035°K. Overall system efficiency is 18.8% yielding a net electrical output of 375 kW. The system specific mass is 10 g/W including a generous shadow shield for unmanned payloads

    Study of Chromium-Frit-Type Coatings for High-Temperature Protection of Molybdenum

    Get PDF
    The achievement of more compact and efficient power plants for aircraft is dependent, among other factors, on the perfection of heat-resisting materials that are superior to those in current use. Molybdenum is one of the high-melting metals (melting point, 4750 F). It is fairly abundant and also can be worked into many of the shapes required in modern power plants. To permit its widespread use at elevated temperatures, however, some means must first be found to prevent its rapid oxidation. The application of a protective coating is one method that might be used to achieve this goal. In the present work, a number of chromium-frit-type coatings were studied. These were bonded to molybdenum specimens by firing in controlled atmospheres to temperatures in the range of 2400 to 2700 F

    The Field Theory of Gravitation and The Rest Mass of Particles

    Full text link
    It is shown in this work that all free physical fields should have a nonzero rest mass according to the field theory of gravitation.Comment: 4 page

    An in vitro comparison between two methods of electrical resistance measurement for occlusal caries detection

    Get PDF
    Because of different measurement techniques and the easier design of the CRM prototype, this in vitro study aimed to compare the diagnostic performance and reproducibility of two electrical methods (Electronic Caries Monitor III, ECM and Cariometer 800, CRM) for occlusal caries detection, and to evaluate the effect of staining/ discoloration of fissures on diagnostic performance. Hundred and seventeen third molars with no apparent occlusal cavitation were selected. Six examiners inspected all specimens independently, using the CRM, and a subgroup of 4 using the ECM. Histological validation using a stereomicroscope was performed after hemisectioning. Intra- and interexaminer reproducibility was assessed by Lin's concordance correlation coefficient (CCC) and Bland and Altman analysis. Diagnostic performance parameters included sensitivity (SE), specificity (SP) and area under the ROC curve (A(z)). The CCC yielded an intra- and interexaminer reproducibility of 0.69/0.62 (ECM) and of 0.79/0.74 (CRM). The mean intra- and interexaminer 95% range of measurements (range between Bland and Altman limits of agreement) given in percentages of the instrument reading were 67%/65% for the ECM and 28%/33% for the CRM. A(z) at the D3-4 level was 0.74 (ECM) and 0.78 (CRM). The CRM showed at least equivalent diagnostic performance to the ECM. However, improvement is still desirable. Diagnostic performance appeared to be enhanced in discolored lesions; however, this may be related to sample lesion distribution characteristics. Copyright (C) 2006 S. Karger AG, Basel

    In defence of the familiar : understanding conservatism in concert selection amongst classical music audiences

    Get PDF
    Since the establishment of a classical music canon in the 19th century, classical music culture has historically been focused on a stable set of masterpieces by genius composers predominantly from the classical and romantic periods. A small number of composers continue to dominate programming to this day. Many classical music organisations are keen to programme music beyond this narrow repertoire and to showcase new or unfamiliar works. The need to sell tickets, however, is often an obstacle, with organisations far more confident in the ability of big hits to attract large crowds. This article explores the experiences and opinions of classical music concertgoers in relation to familiar and unfamiliar music, providing a number of reasons as to why audiences may choose to hear well-known pieces rather than new works. This paper reports on one strand of a qualitative study with 42 individuals who booked tickets for one of two concert series consisting of core and populist repertoire, respectively. Semi-structured interviews were carried out to explore the reasons for their choices and their experiences of attending live concerts. These interviews showed that most participants did indeed have a clear preference for hearing music that was familiar to them, and only frequent attenders relished the challenge of unknown music. Participants felt that listening to familiar music was usually a more enjoyable experience than hearing something new. They rarely spoke of becoming bored with over-familiar music, perhaps because the live concert experience brings a sense of freshness to even the most familiar work

    Universally Coupled Massive Gravity

    Full text link
    We derive Einstein's equations from a linear theory in flat space-time using free-field gauge invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. We adapt these results to yield universally coupled massive variants of Einstein's equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The Freund-Maheshwari-Schonberg theory is therefore not the unique universally coupled massive generalization of Einstein's theory, although it is privileged in some respects. The theories we derive are a subset of those found by Ogievetsky and Polubarinov by other means. The question of positive energy, which continues to be discussed, might be addressed numerically in spherical symmetry. We briefly comment on the issue of causality with two observable metrics and the need for gauge freedom and address some criticisms by Padmanabhan of field derivations of Einstein-like equations along the way.Comment: Introduction notes resemblance between Einstein's discovery process and later field/spin 2 project; matches journal versio
    • 

    corecore