3,412 research outputs found

    Herculin, a Fourth Member of the MyoD Family of Myogenic Regulatory Genes

    Get PDF
    We have identified and cloned herculin, a fourth mouse muscle regulatory gene. Comparison of its DNA and deduced amino acid sequences with those of the three known myogenic genes (MyoD, myogenin, and Myf-5) reveals scattered short spans with similarity to one or more of these genes and a long span with strong similarity to all three. This long span includes a sequence motif that is also present in proteins of the myc, achaete-scute, and immunoglobulin enhancer-binding families. The herculin gene is physically linked to the Myf-5 gene on the chromosome; only 8.5 kilobases separate their translational start sites. A putative 27-kDa protein is encoded by three exons contained within a 1.7-kilobase fragment of the herculin gene. When expressed under the control of the simian virus 40 early promoter, transfected herculin renders murine NIH 3T3 and C3H/10T1/2 fibroblasts myogenic. In doing so, it also activates expression of myogenin, MyoD, and endogenous herculin in NIH 3T3 recipients. In adult mice, herculin is expressed in skeletal muscle but is absent from smooth muscle, cardiac muscle, and all nonmuscle tissues assayed. Direct comparison of the four known myogenic regulators in adult muscle showed that herculin is expressed at a significantly higher level than is any of the others. This quantitative dominance suggests an important role in the establishment or maintenance of adult skeletal muscle

    Computer program conducts facilities utilization and occupancy survey

    Get PDF
    Computer program identifies the uses of all facilities and provides information on the net area in each room as well as the number and classification of people occupying them. The system also provides a means to indicate unsatisfactory work areas and may be able to be updated each month

    Herculin, a fourth member of the MyoD family of myogenic regulatory genes.

    Full text link

    Skeletal muscle phenotypes initiated by ectopic MyoD in transgenic mouse heart

    Get PDF
    Forced expression of the myogenic regulatory gene MyoD in many types of cultured cells initiates their conversion into skeletal muscle. It is not known, however, if MyoD expression serves to activate all or part of the skeletal muscle program in vivo during animal development, nor is it known how limiting the influences of cellular environment may be on the regulatory effects of MyoD. To begin to address these issues, we have produced transgenic mice which express MyoD in developing heart, where neither MyoD nor its three close relatives—myogenin, Myf-5, and MRF4/herculin/Myf-6—are normally expressed. The resulting gross phenotype in offspring from multiple, independent transgenic founders includes abnormal heart morphology and ultimately leads to death. At the molecular level, affected hearts exhibit activation of skeletal muscle-specific regulatory as well as structural genes. We conclude that MyoD is able to initiate the program that leads to skeletal muscle differentiation during mouse development, even in the presence of the ongoing cardiac differentiation program. Thus, targeted misexpression of this tissue-specific regulator during mammalian embryogenesis can activate, either directly or indirectly, a diverse set of genes normally restricted to a different cell lineage and a different cellular environment

    Evidence that 5-hydroxytryptamine3 receptors mediate cytotoxic drug and radiation-evoked emesis.

    Get PDF
    The involvement of 5-hydroxytryptamine (5-HT) 5-HT3 receptors in the mechanisms of severe emesis evoked by cytotoxic drugs or by total body irradiation have been studied in ferrets. Anti-emetic compounds tested were domperidone (a dopamine antagonist), metoclopramide (a gastric motility stimulant and dopamine antagonist at conventional doses, a 5-HT3 receptor antagonist at higher doses) and BRL 24924 (a potent gastric motility stimulant and a 5-HT3 receptor antagonist). Domperidone or metoclopramide prevented apomorphine-evoked emesis, whereas BRL 24924 did not. Similar doses of domperidone did not prevent emesis evoked by cis-platin or by total body irradiation, whereas metoclopramide or BRL 24924 greatly reduced or prevented these types of emesis. Metoclopramide and BRL 24924 also prevented emesis evoked by a combination of doxorubicin and cyclophosphamide. These results are discussed in terms of a fundamental role for 5-HT3 receptors in the mechanisms mediating severely emetogenic cancer treatment therapies

    Slowly cycling Rho kinase-dependent actomyosin cross-bridge slippage explains intrinsic high compliance of detrusor smooth muscle

    Get PDF
    Biological soft tissues are viscoelastic because they display timeindependent pseudoelasticity and time-dependent viscosity. However, there is evidence that the bladder may also display plasticity, defined as an increase in strain that is unrecoverable unless work is done by the muscle. In the present study, an electronic lever was used to induce controlled changes in stress and strain to determine whether rabbit detrusor smooth muscle (rDSM) is best described as viscoelastic or viscoelastic plastic. Using sequential ramp loading and unloading cycles, stress-strain and stiffness-stress analyses revealed that rDSM displayed reversible viscoelasticity, and that the viscous component was responsible for establishing a high stiffness at low stresses that increased only modestly with increasing stress compared with the large increase produced when the viscosity was absent and only pseudoelasticity governed tissue behavior. The study also revealed that rDSM underwent softening correlating with plastic deformation and creep that was reversed slowly when tissues were incubated in a Ca2+ -containing solution. Together, the data support a model of DSM as a viscoelastic-plastic material, with the plasticity resulting from motor protein activation. This model explains the mechanism of intrinsic bladder compliance as slipping cross bridges, predicts that wall tension is dependent not only on vesicle pressure and radius but also on actomyosin cross-bridge activity, and identifies a novel molecular target for compliance regulation, both physiologically and therapeutically

    Parietal epithelial cell differentiation to a podocyte fate in the aged mouse kidney

    Get PDF
    Healthy aging is typified by a progressive and absolute loss of podocytes over the lifespan of animals and humans. To test the hypothesis that a subset of glomerular parietal epithelial cell (PEC) progenitors transition to a podocyte fate with aging, dual reporte

    Epithelial laminin α5 is necessary for distal epithelial cell maturation, VEGF production, and alveolization in the developing murine lung

    Get PDF
    AbstractLaminin α5 is prominent in the basement membrane of alveolar walls, airways, and pleura in developing and adult lung. Targeted deletion of laminin α5 in mice causes developmental defects in multiple organs, but embryonic lethality has precluded examination of the latter stages of lung development. To identify roles for laminin α5 in lung development, we have generated an inducible lung epithelial cell-specific Lama5 null (SP-CLama5fl/−) mouse through use of the Cre/loxP system, the human surfactant protein C promoter, and the reverse tetracycline transactivator. SP-CLama5fl/− embryos exposed to doxycycline from E6.5 died a few hours after birth. Compared to control littermates, SP-CLama5fl/− lungs had dilated, enlarged distal airspaces, but basement membrane ultrastructure was preserved. Distal epithelial cell differentiation was perturbed, with a marked reduction of alveolar type II cells and a virtual absence of type I cells. Cell proliferation was reduced and apoptosis was increased. Capillary density was diminished, and this was associated with a decrease in total lung VEGF production. Overall, these findings indicate that epithelial laminin α5, independent of its structural function, is necessary for murine lung development, and suggest a role for laminin α5 in signaling pathways that promote alveolar epithelial cell differentiation and VEGF expression
    • …
    corecore