6,835 research outputs found
Clouds, photolysis and regional tropospheric ozone budgets.
We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene, through decreases of OH in the lower troposphere, is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity of the ozone budget components on regional scales
Magnetic relaxation studies on a single-molecule magnet by time-resolved inelastic neutron scattering
Time-resolved inelastic neutron scattering measurements on an array of
single-crystals of the single-molecule magnet Mn12ac are presented. The data
facilitate a spectroscopic investigation of the slow relaxation of the
magnetization in this compound in the time domain.Comment: 3 pages, 4 figures, REVTEX4, to appear in Appl. Phys. Lett., for an
animation see also
http://www.dcb.unibe.ch/groups/guedel/members/ow2/trins.ht
Interannual variability of tropospheric composition:the influence of changes in emissions, meteorology and clouds
We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition during 1996-2000. This period was characterised by anomalous meteorological conditions associated with the strong El Nino of 1997-1998 and intense wildfires, which produced a large amount of pollution. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. Changes in stratosphere-troposphere exchange, which are largely driven by meteorological variability, are found to play a particularly important role in driving ozone changes. The strong influence of emissions on NO2 and ozone interannual variability is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis for 1996-2000 we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies
Cultural Variation in Triadic Infant–Caregiver Object Exploration
Two studies examined the extent to which the type of triadic interaction pervasive in Western populations (i.e., shared visual attention and ostensive pedagogical cues) was representative of infant-caregiver object exploration in a non-Western indigenous community. Caregivers in the United States and Vanuatu interacted with infants and a novel object for 3 min. In Study 1 (N = 116, Mage = 29.05), Ni-Van caregivers used more physical triadic engagement and U.S. caregivers used more visual triadic engagement. In Study 2 (N = 80, Mage = 29.91), U.S. caregivers were more likely than Ni-Van caregivers to transmit an action and to use visual cues while interacting with their child. These studies demonstrate that the Western model of early social learning is not universal
Laboratory Experiments, Numerical Simulations, and Astronomical Observations of Deflected Supersonic Jets: Application to HH 110
Collimated supersonic flows in laboratory experiments behave in a similar
manner to astrophysical jets provided that radiation, viscosity, and thermal
conductivity are unimportant in the laboratory jets, and that the experimental
and astrophysical jets share similar dimensionless parameters such as the Mach
number and the ratio of the density between the jet and the ambient medium.
Laboratory jets can be studied for a variety of initial conditions, arbitrary
viewing angles, and different times, attributes especially helpful for
interpreting astronomical images where the viewing angle and initial conditions
are fixed and the time domain is limited. Experiments are also a powerful way
to test numerical fluid codes in a parameter range where the codes must perform
well. In this paper we combine images from a series of laboratory experiments
of deflected supersonic jets with numerical simulations and new spectral
observations of an astrophysical example, the young stellar jet HH 110. The
experiments provide key insights into how deflected jets evolve in 3-D,
particularly within working surfaces where multiple subsonic shells and
filaments form, and along the interface where shocked jet material penetrates
into and destroys the obstacle along its path. The experiments also underscore
the importance of the viewing angle in determining what an observer will see.
The simulations match the experiments so well that we can use the simulated
velocity maps to compare the dynamics in the experiment with those implied by
the astronomical spectra. The experiments support a model where the observed
shock structures in HH 110 form as a result of a pulsed driving source rather
than from weak shocks that may arise in the supersonic shear layer between the
Mach disk and bow shock of the jet's working surface.Comment: Full resolution figures available at
http://sparky.rice.edu/~hartigan/pub.html To appear in Ap
Exchange-coupling constants, spin density map, and Q dependence of the inelastic neutron scattering intensity in single-molecule magnets
The Q dependence of the inelastic neutron scattering (INS) intensity of
transitions within the ground-state spin multiplet of single-molecule magnets
(SMMs) is considered. For these transitions, the Q dependence is related to the
spin density map in the ground state, which in turn is governed by the
Heisenberg exchange interactions in the cluster. This provides the possibility
to infer the exchange-coupling constants from the Q dependence of the INS
transitions within the spin ground state. The potential of this strategy is
explored for the M = +-10 -> +- 9 transition within the S = 10 multiplet of the
molecule Mn12 as an example. The Q dependence is calculated for powder as well
as single-crystal Mn12 samples for various exchange-coupling situations
discussed in the literature. The results are compared to literature data on a
powder sample of Mn12 and to measurements on an oriented array of about 500
single-crystals of Mn12. The calculated Q dependence exhibits significant
variation with the exchange-coupling constants, in particular for a
single-crystal sample, but the experimental findings did not permit an
unambiguous determination. However, although challenging, suitable experiments
are within the reach of today's instruments.Comment: 11 pages, 6 figures, REVTEX4, to appear in PR
Parity-Violating Interaction Effects in the np System
We investigate parity-violating observables in the np system, including the
longitudinal asymmetry and neutron-spin rotation in np elastic scattering, the
photon asymmetry in np radiative capture, and the asymmetries in deuteron
photo-disintegration d(gamma,n)p in the threshold region and
electro-disintegration d(e,e`)np in quasi-elastic kinematics. To have an
estimate of the model dependence for the various predictions, a number of
different, latest-generation strong-interaction potentials--Argonne v18, Bonn
2000, and Nijmegen I--are used in combination with a weak-interaction potential
consisting of pi-, rho-, and omega-meson exchanges--the model known as DDH. The
complete bound and scattering problems in the presence of parity-conserving,
including electromagnetic, and parity-violating potentials is solved in both
configuration and momentum space. The issue of electromagnetic current
conservation is examined carefully. We find large cancellations between the
asymmetries induced by the parity-violating interactions and those arising from
the associated pion-exchange currents. In the np capture, the model dependence
is nevertheless quite small, because of constraints arising through the Siegert
evaluation of the relevant E1 matrix elements. In quasi-elastic electron
scattering these processes are found to be insignificant compared to the
asymmetry produced by gamma-Z interference on individual nucleons.Comment: 65 pages, 26 figures, submitted to PR
Agency, qualia and life: connecting mind and body biologically
Many believe that a suitably programmed computer could act for its own goals and experience feelings. I challenge this view and argue that agency, mental causation and qualia are all founded in the unique, homeostatic nature of living matter. The theory was formulated for coherence with the concept of an agent, neuroscientific data and laws of physics. By this method, I infer that a successful action is homeostatic for its agent and can be caused by a feeling - which does not motivate as a force, but as a control signal. From brain research and the locality principle of physics, I surmise that qualia are a fundamental, biological form of energy generated in specialized neurons. Subjectivity is explained as thermodynamically necessary on the supposition that, by converting action potentials to feelings, the neural cells avert damage from the electrochemical pulses. In exchange for this entropic benefit, phenomenal energy is spent as and where it is produced - which precludes the objective observation of qualia
- …