93,090 research outputs found
Gravitational Acceleration of Spinning Bodies From Lunar Laser Ranging Measurements
The Sun's relativistic gravitational gradient accelerations of Earth and
Moon, dependent on the motions of the latter bodies, act upon the system's
internal angular momentum. This spin-orbit force (which plays a part in
determining the gravity wave signal templates for astrophysical sources)
slightly accelerates the Earth-Moon system as a whole, but it more robustly
perturbs that system's internal dynamics with a 5 cm, synodically oscillating
range contribution which is presently measured to 4 mm precision by more than
three decades of lunar laser ranging.Comment: 10 pages, PCTex32.v3.
Space-based tests of gravity with laser ranging
Existing capabilities in laser ranging, optical interferometry and metrology,
in combination with precision frequency standards, atom-based quantum sensors,
and drag-free technologies, are critical for the space-based tests of
fundamental physics; as a result, of the recent progress in these disciplines,
the entire area is poised for major advances. Thus, accurate ranging to the
Moon and Mars will provide significant improvements in several gravity tests,
namely the equivalence principle, geodetic precession, PPN parameters
and , and possible variation of the gravitational constant . Other
tests will become possible with development of an optical architecture that
would allow proceeding from meter to centimeter to millimeter range accuracies
on interplanetary distances. Motivated by anticipated accuracy gains, we
discuss the recent renaissance in lunar laser ranging and consider future
relativistic gravity experiments with precision laser ranging over
interplanetary distances.Comment: 14 pages, 2 figures, 1 table. To appear in the proceedings of the
International Workshop "From Quantum to Cosmos: Fundamental Physics Research
in Space", 21-24 May 2006, Warrenton, Virginia, USA
http://physics.jpl.nasa.gov/quantum-to-cosmos
Experimental Design for the LATOR Mission
This paper discusses experimental design for the Laser Astrometric Test Of
Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy
of 1 part in 10^8 in measuring the curvature of the solar gravitational field
as given by the value of the key Eddington post-Newtonian parameter \gamma.
This mission will demonstrate the accuracy needed to measure effects of the
next post-Newtonian order (~G^2) of light deflection resulting from gravity's
intrinsic non-linearity. LATOR will provide the first precise measurement of
the solar quadrupole moment parameter, J2, and will improve determination of a
variety of relativistic effects including Lense-Thirring precession. The
mission will benefit from the recent progress in the optical communication
technologies -- the immediate and natural step above the standard radio-metric
techniques. The key element of LATOR is a geometric redundancy provided by the
laser ranging and long-baseline optical interferometry. We discuss the mission
and optical designs, as well as the expected performance of this proposed
mission. LATOR will lead to very robust advances in the tests of Fundamental
physics: this mission could discover a violation or extension of general
relativity, or reveal the presence of an additional long range interaction in
the physical law. There are no analogs to the LATOR experiment; it is unique
and is a natural culmination of solar system gravity experiments.Comment: 16 pages, 17 figures, invited talk given at ``The 2004 NASA/JPL
Workshop on Physics for Planetary Exploration.'' April 20-22, 2004, Solvang,
C
Comparison of toughened composite laminates using NASA standard damage tolerance tests
The proposed application of composite materials to transport wing and fuselage structures prompted the search for tougher materials having improved resistance to impact damage and delamination. Several resin/graphite fiber composite materials were subjected to standard damage tolerance tests and the results were compared to ascertain which materials have superior toughness. In addition, test results from various company and NASA laboratories were compared for repeatability
SDSS J142625.71+575218.3: the First Pulsating White Dwarf With A Large Detectable Magnetic Field
We report the discovery of a strong magnetic field in the unique pulsating carbon- atmosphere white dwarf SDSS J142625.71 + 575218.3. From spectra gathered at the MMT and Keck telescopes, we infer a surface field of B(s) similar or equal to 1.2 MG, based on obvious Zeeman components seen in several carbon lines. We also detect the presence of a Zeeman- splitted He I lambda 4471 line, which is an indicator of the presence of a nonnegligible amount of helium in the atmosphere of this "hot DQ" star. This is important for understanding its pulsations, as nonadabatic theory reveals that some helium must be present in the envelope mixture for pulsation modes to be excited in the range of effective temperature where the target star is found. Out of nearly 200 pulsating white dwarfs known today, this is the first example of a star with a large detectable magnetic field. We suggest that SDSS J142625.71 + 575218.3 is the white dwarf equivalent of a rapidly oscillating Ap star.NSERCNSF AST 03-07321Reardon FoundationAstronom
Recommended from our members
Near infrared spectroscopy of W51 IRS-2
Near-infrared spectra at 2.95-3.5 μm and 3.99-10 μm have been obtained towards W51 IRS-2 and its surroundings, in order to investigate the spatial variations in intensity of the 3.28 μm unidentified feature and the 4.05 μm Brackett-α line. The Br-α and 3.28 μm features occupy a broadly similar spatial zone, which is characterised by an unresolved core responsible for most of the emission, and an extended and considerably weaker halo. Grain properties required to excite the 4.28 microns line, the nature of the 3.28 μm emission, and its relation to the source structure are discussed
Improving LLR Tests of Gravitational Theory
Accurate analysis of precision ranges to the Moon has provided several tests
of gravitational theory including the Equivalence Principle, geodetic
precession, parameterized post-Newtonian (PPN) parameters and ,
and the constancy of the gravitational constant {\it G}. Since the beginning of
the experiment in 1969, the uncertainties of these tests have decreased
considerably as data accuracies have improved and data time span has
lengthened. We are exploring the modeling improvements necessary to proceed
from cm to mm range accuracies enabled by the new Apache Point Observatory
Lunar Laser-ranging Operation (APOLLO) currently under development in New
Mexico. This facility will be able to make a significant contribution to the
solar system tests of fundamental and gravitational physics. In particular, the
Weak and Strong Equivalence Principle tests would have a sensitivity
approaching 10, yielding sensitivity for the SEP violation parameter
of , general relativistic effects would
be tested to better than 0.1%, and measurements of the relative change in the
gravitational constant, , would be % the inverse age of the
universe. Having this expected accuracy in mind, we discusses the current
techniques, methods and existing physical models used to process the LLR data.
We also identify the challenges for modeling and data analysis that the LLR
community faces today in order to take full advantage of the new APOLLO ranging
station.Comment: 15 pages, 3 figures, talk presented at 2003 NASA/JPL Workshop on
Fundamental Physics in Space, April 14-16, 2003, Oxnard, C
Simultaneous Multiwavelength Observations of Magnetic Activity in Ultracool Dwarfs. IV. The Active, Young Binary NLTT 33370 AB (=2MASS J13142039+1320011)
We present multi-epoch simultaneous radio, optical, H{\alpha}, UV, and X-ray
observations of the active, young, low-mass binary NLTT 33370 AB (blended
spectral type M7e). This system is remarkable for its extreme levels of
magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known,
and here we show that it is also one of the most X-ray luminous UCDs known. We
detect the system in all bands and find a complex phenomenology of both flaring
and periodic variability. Analysis of the optical light curve reveals the
simultaneous presence of two periodicities, 3.7859 0.0001 and 3.7130
0.0002 hr. While these differ by only ~2%, studies of differential
rotation in the UCD regime suggest that it cannot be responsible for the two
signals. The system's radio emission consists of at least three components:
rapid 100% polarized flares, bright emission modulating periodically in phase
with the optical emission, and an additional periodic component that appears
only in the 2013 observational campaign. We interpret the last of these as a
gyrosynchrotron feature associated with large-scale magnetic fields and a cool,
equatorial plasma torus. However, the persistent rapid flares at all rotational
phases imply that small-scale magnetic loops are also present and reconnect
nearly continuously. We present an SED of the blended system spanning more than
9 orders of magnitude in wavelength. The significant magnetism present in NLTT
33370 AB will affect its fundamental parameters, with the components' radii and
temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we
suggest spatially resolved observations that could clarify many aspects of this
system's nature.Comment: emulateapj, 22 pages, 15 figures, ApJ in press; v2: fixes low-impact
error in Figure 15; v3: now in-pres
The LISA Gravitational Wave Foreground: A Study of Double White Dwarfs
Double white dwarfs are expected to be a source of confusion-limited noise
for the future gravitational wave observatory LISA. In a specific frequency
range, this 'foreground noise' is predicted to rise above the instrumental
noise and hinder the detection of other types of signals, e.g., gravitational
waves arising from stellar mass objects inspiraling into massive black holes.
In many previous studies only detached populations of compact object binaries
have been considered in estimating the LISA gravitational wave foreground
signal. Here, we investigate the influence of compact object detached and
Roche-Lobe Overflow Galactic binaries on the shape and strength of the LISA
signal. Since >99% of remnant binaries which have orbital periods within the
LISA sensitivity range are white dwarf binaries, we consider only these
binaries when calculating the LISA signal. We find that the contribution of
RLOF binaries to the foreground noise is negligible at low frequencies, but
becomes significant at higher frequencies, pushing the frequency at which the
foreground noise drops below the instrumental noise to >6 mHz. We find that it
is important to consider the population of mass transferring binaries in order
to obtain an accurate assessment of the foreground noise on the LISA data
stream. However, we estimate that there still exists a sizeable number (~11300)
of Galactic double white dwarf binaries which will have a signal-to-noise ratio
>5, and thus will be potentially resolvable with LISA. We present the LISA
gravitational wave signal from the Galactic population of white dwarf binaries,
show the most important formation channels contributing to the LISA disc and
bulge populations and discuss the implications of these new findings.Comment: ApJ accepted. 28 pages, 11 figures (low resolution), 5 tables, some
new references and changed content since last astro-ph versio
Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures
The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research
- …