1,006 research outputs found
ZO-1 Guides Tight Junction Assembly and Epithelial Morphogenesis via Cytoskeletal Tension-Dependent and -Independent Functions
Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell–cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell–cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions
Neuromuscular synaptic transmission in aged ganglioside-deficient mice
Gangliosides are sialylated glycosphingolipids that are present in high density on neuronal membranes, especially at synapses, where they are assumed to play functional or modulating roles. Mice lacking GM2/GD2-synthase express only the simple gangliosides GD3 and GM3 and develop progressive motor behaviour deficits upon ageing, apparently due to failing complex ganglioside-dependent maintenance and/or repair processes or, alternatively, toxic GM3/GD3 accumulation. We investigated the function of neuromuscular junctions (NMJs) of aged (>9 month-old) GM2/GD2-synthase null-mutant mice, because synaptic dysfunction might develop with age and could potentially contribute to the late-onset motor phenotype. In addition, we studied NMJs of old mice lacking GD3-synthase (expressing only O- and a-series gangliosides), which do not show an overt neurological phenotype but may develop subclinical synaptic deficits. Detailed electrophysiological analyses showed subtle changes in presynaptic neurotransmitter release. Acetylcholine release at 40 Hz nerve stimulation at aged GM2/GD2-synthase null-mutant NMJs ran down slightly more pronounced than at wild-type NMJs, and spontaneous acetylcholine release rate at GD3-synthase null-mutant NMJs was somewhat higher than at wild-type, selectively at 25 degrees C bath temperature. Interestingly, we observed faster kinetics of postsynaptic electrophysiological responses at aged GD3-synthase null-mutant NMJs, not previously seen by us at NMJs of young GD3-synthase null-mutants or other types of (aged or young) ganglioside-deficient mice. These kinetic changes might reflect a change in postsynaptic acetylcholine receptor behaviour. Our data indicate that it is highly unlikely that transmission failure at NMJs contributes to the progressive motor defects of aged GM2/GD2-synthase null-mutants and that, despite some kinetic changes of synaptic signals, neuromuscular transmission remains successful in aged GD3-synthase null-mutant mice. Apparently, mutual redundancy of the different gangliosides in supporting presynaptic function, as observed previously by us in young mice, remains adequate upon ageing or, alternatively, gangliosides have only relatively little direct impact on neuromuscular synaptic function, even in aged mice. (C) 2009 Elsevier Inc. All rights reserve
First interim analysis of the GIDEON (Global Investigation of therapeutic DEcisions in hepatocellular carcinoma and Of its treatment with sorafeNib) non‐interventional study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92068/1/j.1742-1241.2012.02940.x.pd
The roles of tumor necrosis factor-alpha in colon tight junction protein expression and intestinal mucosa structure in a mouse model of acute liver failure
<p>Abstract</p> <p>Background</p> <p>Spontaneous bacterial peritonitis (SBP) is a common clinical disease and one of the most severe complications of acute liver failure (ALF). Although the mechanism responsible for SBP is unclear, cytokines play an important role. The aim of this study was to investigate the effects of tumor necrosis factor-alpha (TNF-α) on the structure of the intestinal mucosa and the expression of tight junction (Zona Occludens 1; ZO-1) protein in a mouse model of ALF.</p> <p>Methods</p> <p>We induced ALF using D-galactosamine/lipopolysaccharide (GalN/LPS) or GalN/TNF-α and assessed the results using transmission electron microscopy, immunohistochemistry, Western blotting, ELISA and real-time quantitative PCR. The effects of administration of anti-TNF-α IgG antibody or anti-TNF-α R1 antibody before administration of GalN/LPS or GalN/TNF-α, respectively, on TNF-α were also assessed.</p> <p>Results</p> <p>Morphological abnormalities in the intestinal mucosa of ALF mice were positively correlated with serum TNF-α level. Electron microscopic analysis revealed tight junction (TJ) disruptions, epithelial cell swelling, and atrophy of intestinal villi. Gut bacteria invaded the body at sites where TJ disruptions occurred. Expression of ZO-1 mRNA was significantly decreased in both ALF models, as was the level of ZO-1 protein. Prophylactic treatment with either anti-TNF-α IgG antibody or anti-tumor necrosis factor-a receptor1 (anti-TNF-α R1) antibody prevented changes in intestinal tissue ultrastructure and ZO-1 expression.</p> <p>Conclusion</p> <p>TNF-α affects the structure of the intestinal mucosa, decreases expression of ZO-1, and affects the morphology of the colon in a mouse model of ALF. It also may participate in the pathophysiological mechanism of SBP complicated to ALF.</p
A Novel Screening System for Claudin Binder Using Baculoviral Display
Recent progress in cell biology has provided new insight into the claudin (CL) family of integral membrane proteins, which contains more than 20 members, as a target for pharmaceutical therapy. Few ligands for CL have been identified because it is difficult to prepare CL in an intact form. In the present study, we developed a method to screen for CL binders by using the budded baculovirus (BV) display system. CL4-displaying BV interacted with a CL4 binder, the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE), but it did not interact with C-CPE that was mutated in its CL4-binding region. C-CPE did not interact with BV and CL1-displaying BV. We used CL4-displaying BV to select CL4-binding phage in a mixture of a scFv-phage and C-CPE-phage. The percentage of C-CPE-phage in the phage mixture increased from 16.7% before selection to 92% after selection, indicating that CL-displaying BV may be useful for the selection of CL binders. We prepared a C-CPE phage library by mutating the functional amino acids. We screened the library for CL4 binders by affinity to CL4-displaying BV, and we found that the novel CL4 binders modulated the tight-junction barrier. These findings indicate that the CL-displaying BV system may be a promising method to produce a novel CL binder and modulator
- …