12 research outputs found

    The effect of UCP3 overexpression on mitochondrial ROS production in skeletal muscle of young versus aged mice

    Get PDF
    AbstractUncoupling protein 3 (UCP3) is suggested to protect mitochondria against aging and lipid-induced damage, possibly via modulation of reactive oxygen species (ROS) production. Here we show that mice overexpressing UCP3 (UCP3Tg) have a blunted age-induced increase in ROS production, assessed by electron spin resonance spectroscopy, but only after addition of 4-hydroxynonenal (4-HNE). Mitochondrial function, assessed by respirometry, on glycolytic substrate was lower in UCP3Tg mice compared to wild types, whereas this tended to be higher on fatty acids. State 4o respiration was higher in UCP3Tg animals. To conclude, UCP3 overexpression leads to increased state 4o respiration and, in presence of 4-HNE, blunts the age-induced increase in ROS production

    Fatty acids prevent Hypoxia-Inducible Factor 1α signalling in type 2 diabetes

    Get PDF
    SUMMARYHypoxia-inducible factor (HIF)-1ais essential following a myocardial infarction (MI), and diabetic patients havepoorer prognosis post-MI. Could HIF-1aactivation be abnormal in the diabetic heart, and could metabolism becausing this? Diabetic hearts had decreased HIF-1aprotein following ischemia, and insulin-resistant cardio-myocytes had decreased HIF-1a-mediated signaling and adaptation to hypoxia. This was due to elevated fattyacid (FA) metabolism preventing HIF-1aprotein stabilization. FAs exerted their effect by decreasing succinateconcentrations, a HIF-1aactivator that inhibits the regulatory HIF hydroxylase enzymes. In vivo and in vitropharmacological HIF hydroxylase inhibition restored HIF-1aaccumulation and improved post-ischemic func-tional recovery in diabetes

    Small heterodimer partner (SHP) contributes to insulin resistance in cardiomyocytes

    Get PDF
    Small heterodimer partner (SHP) is an atypical nuclear receptor expressed in heart that has been shown to inhibit the hypertrophic response. Here, we assessed the role of SHP in cardiac metabolism and inflammation. Mice fed a high-fat diet (HFD) displayed glucose intolerance accompanied by increased cardiac mRNA levels of Shp. In HL-1 cardiomyocytes, SHP overexpression inhibited both basal and insulin-stimulated glucose uptake and impaired the insulin signalling pathway (evidenced by reduced AKT and AS160 phosphorylation), similar to insulin resistant cells generated by high palmitate/high insulin treatment (HP/HI; 500μM/100nM). In addition, SHP overexpression increased Socs3 mRNA and reduced IRS-1 protein levels. SHP overexpression also induced Cd36 expression (~6.2 fold; p<0.001) linking to the observed intramyocellular lipid accumulation. SHP overexpressing cells further showed altered expression of genes involved in lipid metabolism, i.e., Acaca, Acadvl or Ucp3, augmented NF-κB DNA-binding activity and induced transcripts of inflammatory genes, i.e., Il6 and Tnf mRNA (~4-fold induction, p<0.01). Alterations in metabolism and inflammation found in SHP overexpressing cells were associated with changes in the mRNA levels of Ppara (79% reduction, p<0.001) and Pparg (~58-fold induction, p<0.001). Finally, co-immunoprecipitation studies showed that SHP overexpression strongly reduced the physical interaction between PPARα and the p65 subunit of NF-κB, suggesting that dissociation of these two proteins is one of the mechanisms by which SHP initiates the inflammatory response in cardiac cells. Overall, our results suggest that SHP upregulation upon high-fat feeding leads to lipid accumulation, insulin resistance and inflammation in cardiomyocytes.This study was partially supported by funds from The Netherlands Organization for Scientific Research (NWO) (VIDI grant number 864.10.007 to DN), the Spanish Ministerio de Economía y Competitividad (SAF2015-64146-R to MVC) and Fundació la Marató TV3 2014 (to MVC). DC was supported by a Marie Curie fellowship (PIIFGA-2012-332230)
    corecore