3,288 research outputs found
Modeling microscopic swimmers at low Reynolds number
We employ three numerical methods to explore the motion of low Reynolds
number swimmers, modeling the hydrodynamic interactions by means of the Oseen
tensor approximation, lattice Boltzmann simulations and multiparticle collision
dynamics. By applying the methods to a three bead linear swimmer, for which
exact results are known, we are able to compare and assess the effectiveness of
the different approaches. We then propose a new class of low Reynolds number
swimmers, generalized three bead swimmers that can change both the length of
their arms and the angle between them. Hence we suggest a design for a
microstructure capable of moving in three dimensions. We discuss multiple bead,
linear microstructures and show that they are highly efficient swimmers. We
then turn to consider the swimming motion of elastic filaments. Using
multiparticle collision dynamics we show that a driven filament behaves in a
qualitatively similar way to the micron-scale swimming device recently
demonstrated by Dreyfus et al.Comment: 12 pages, 10 figure
Transport coefficients of a mesoscopic fluid dynamics model
We investigate the properties of stochastic rotation dynamics
(Malevanets-Kapral method), a mesoscopic model used for simulating fluctuating
hydrodynamics. Analytical results are given for the transport coefficients. We
discuss the most efficient way of measuring the transport properties and obtain
excellent agreement between the theoretical and numerical calculations.Comment: 12 pages, 9 figures, submitted to J. Chem. Phy
Comment on "Plasma ionization by annularly bounded helicon waves" [Phys . Plasmas 13, 063501 (2006)]
The neoclassical calculation of the helicon wave theory contains a
fundamental flaw. Use is made of a proportional relationship between the
magnetic field and its curl to derive the Helmholtz equation describing helicon
wave propagation; however, by the fundamental theorem of Stokes, the curl of
the magnetic field must be perpendicular to that portion of the field
contributing to the local curl. Reexamination of the equations of motion
indicates that only electromagnetic waves propagate through a stationary region
of constant pressure in a fully ionized, neutral medium.Comment: 7 pages, 1 figure, to be published in Phys. Plasmas,
http://link.aip.org/link/?PHPAEN/16/054701/
Classical Physics and Quantum Loops
The standard picture of the loop expansion associates a factor of h-bar with
each loop, suggesting that the tree diagrams are to be associated with
classical physics, while loop effects are quantum mechanical in nature. We
discuss examples wherein classical effects arise from loop contributions and
display the relationship between the classical terms and the long range effects
of massless particles.Comment: 15 pages, 3 figure
A study of stiffness, residual strength and fatigue life relationships for composite laminates
Qualitative and quantitative exploration of the relationship between stiffness, strength, fatigue life, residual strength, and damage of unnotched, graphite/epoxy laminates subjected to tension loading. Clarification of the mechanics of the tension loading is intended to explain previous contradictory observations and hypotheses; to develop a simple procedure to anticipate strength, fatigue life, and stiffness changes; and to provide reasons for the study of more complex cases of compression, notches, and spectrum fatigue loading. Mathematical models are developed based upon analysis of the damage states. Mathematical models were based on laminate analysis, free body type modeling or a strain energy release rate. Enough understanding of the tension loaded case is developed to allow development of a proposed, simple procedure for calculating strain to failure, stiffness, strength, data scatter, and shape of the stress-life curve for unnotched laminates subjected to tension load
Characterizing stellar populations in spiral disks
It is now possible to measure detailed spectral indices for stellar
populations in spiral disks. We propose to interpret these data using
evolutionary synthesis models computed from the Star Formation Histories
obtained from chemical evolutionary models. We find that this technique is a
powerful tool to discriminate between old and young stellar populations. We
show an example of the power of Integral Field spectroscopy in unveiling the
spatial distribution of populations in a barred galaxy.Comment: 5 pages, to be published in "Science Perspectives for 3D
Spectroscopy", Eds. M. Kissler-Patig, M.M. Roth and J.R. Walsh
(Springer-Verlag, ESO astrophysics symposia series
Transport coefficients of multi-particle collision algorithms with velocity-dependent collision rules
Detailed calculations of the transport coefficients of a recently introduced
particle-based model for fluid dynamics with a non-ideal equation of state are
presented. Excluded volume interactions are modeled by means of biased
stochastic multiparticle collisions which depend on the local velocities and
densities. Momentum and energy are exactly conserved locally. A general scheme
to derive transport coefficients for such biased, velocity dependent collision
rules is developed. Analytic expressions for the self-diffusion coefficient and
the shear viscosity are obtained, and very good agreement is found with
numerical results at small and large mean free paths. The viscosity turns out
to be proportional to the square root of temperature, as in a real gas. In
addition, the theoretical framework is applied to a two-component version of
the model, and expressions for the viscosity and the difference in diffusion of
the two species are given.Comment: 31 pages, 8 figures, accepted by J. Phys. Cond. Matte
Feather growth rate and mass in nearctic passerines with variablemigratory behavior and molt pattern
Bird species vary greatly in the duration of their annual complete feather molt. However, such variation is not well documented
in birds from many biogeographic areas, which restricts our understanding of the diversification of molt strategies. Recent research has revealed
that molt duration can be estimated in passerines from ptilochronology-based measurements of the growth rate of their tail feathers. We used
this approach to explore how molt duration varied in 98 Nearctic species that have different migratory strategies and molt patterns. As previously
documented for Palearctic species, migration was associated with a shortening of molt duration among species that molted during summer on
their breeding range. However, molts of winter-molting migratory species were as long as those of summer-molting sedentary species, which
suggests that winter molt also allows Nearctic migrants to avoid the temporal constraints experienced during summer. Our results also suggest
that migratory species that undergo a stopover molt within the Mexican monsoon region have the shortest molt duration among all Nearctic
passerines. Interestingly, and contrary to expectations from a potential tradeoff between molt duration and feather quality, observed variation
in feather growth rate was positively correlated with differences in tail feather mass, which may be caused by differences among groups in the
availability of resources for molting. We encourage the use of similar approaches to study the variation in molt duration in other geographic areas
where knowledge of the evolution of molt is limited.
Temporal Changes in Astronauts Muscle and Cardiorespiratory Physiology Pre-, In-, and Post-Spaceflight
NASAs vision for future exploration missions depends on the ability to protect astronauts health and safety for performance of Extravehicular Activity (EVA), and to allow astronauts to safely egress from vehicles in a variety of landing scenarios (e.g. water landing upon return to Earth and undefined planetary/lunar landings). Prolonged exposure to spaceflight results in diminished tolerance to prolonged physical activity, decreased cardiac and sensorimotor function, and loss of bone mineral density, muscle mass, and muscle strength. For over 50 years exercise has been the primary countermeasure against these physiologic decrements during spaceflight, and while the resulting protection is adequate for ISS missions (i.e., Soyuz landing, microgravity EVAs), there is little information regarding time-course changes in muscle and aerobic performance. As spaceflight progresses towards longer exploration missions and vehicles with less robust exercise capabilities compared to ISS, countermeasures will need to be combined and optimized to protect crew health and performance across all organ systems over the course of exploration missions up to 3 years in duration. This will require a more detailed understanding of the dynamic effects of spaceflight on human performance. Thus, the focus of this study is quantifying decrements in physical performance over different mission durations, and to provide detailed information on the physiological rational for why and when observed changes in performance occur. The research proposed will temporally profile changes in astronauts cardiorespiratory fitness, muscle mass, strength, and endurance over spaceflight missions of 2 months, 6 months, and up to 1 year in duration. Additionally, an extrapolation model will provide predictions for changes associated with exploration missions 2-3 years in duration. To accomplish these objectives astronauts will be asked to participate in pre, in, post-flight measurement of muscle performance, muscle size, cardiorespiratory fitness and submaximal performance capabilities, as well as non-invasive assessment of cerebral and muscle oxygenation and perfusion (Table 1). Additionally, ambulatory and in-flight exercise, nutrition, and sleep will be monitored using a variety of commercial technologies and in-flight assessment tools. Significance: Our detailed testing protocol will provide valuable information for describing how and when spaceflight-induced muscle and aerobic based adaptations occur over the course of spaceflight missions up to and beyond 1 year. This information will be vital in the assessment as to whether humans can be physically ready for deep space exploration such as Mars missions with current technology, or if additional mitigation strategies are necessary
Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments
We study two continuous variable systems (or two harmonic oscillators) and
investigate their entanglement evolution under the influence of non-Markovian
thermal environments. The continuous variable systems could be two modes of
electromagnetic fields or two nanomechanical oscillators in the quantum domain.
We use quantum open system method to derive the non-Markovian master equations
of the reduced density matrix for two different but related models of the
continuous variable systems. The two models both consist of two interacting
harmonic oscillators. In model A, each of the two oscillators is coupled to its
own independent thermal reservoir, while in model B the two oscillators are
coupled to a common reservoir. To quantify the degrees of entanglement for the
bipartite continuous variable systems in Gaussian states, logarithmic
negativity is used. We find that the dynamics of the quantum entanglement is
sensitive to the initial states, the oscillator-oscillator interaction, the
oscillator-environment interaction and the coupling to a common bath or to
different, independent baths.Comment: 10 two-column pages, 8 figures, to appear in Phys. Rev.
- …