1,439 research outputs found

    The Micro Slit Gas Detector

    Full text link
    We describe the first tests with a new proportional gas detector. Its geometry consists in slits opened in a copper metallized kapton foil with 30 micron anode strips suspended in these openings. In this way the multiplication process is similar to a standard MSGC. The fundamental difference is the absence of an insulating substrate around the anode. Also the material budget is significantly reduced, and the problems related to charging-up or polarization are removed. Ageing properties of this detector are under study.Comment: 13 pages tex file, 10 figures ep

    Bilateral Pneumothoraces Following Central Venous Cannulation

    Get PDF
    We report the occurrence of a bilateral pneumothoraces after unilateral central venous catheterization of the right subclavian vein in a 70-year-old patient. The patient had no history of pulmonary or pleural disease and no history of cardiothoracic surgery. Two days earlier, she had a median laparotomy under general and epidural anaesthesia. Prior to the procedure, the patient was hemodynamically stable and her transcutaneous oxygen saturation was 97% in room air. We punctured the right pleural space before cannulation of the right subclavian vein. After the procedure, the patient slowly became hemodynamically instable with respiratory distress. A chest radiograph revealed a complete left-side pneumothorax and a mild right-side pneumothorax. The right-side pneumothorax became under tension after left chest tube insertion. The symptoms finally resolved after insertion of a right chest tube. After a diagnostic work-up, we suspect a congenital “Buffalo chests” explaining bilateral pneumothoraces and a secondary tension pneumothorax

    Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance

    Full text link
    A liquid isooctane (C8_{8}H18_{18}) filled ionization linear array for radiotherapy quality assurance has been designed, built and tested. The detector consists of 128 pixels, each of them with an area of 1.7 mm ×\times 1.7 mm and a gap of 0.5 mm. The small pixel size makes the detector ideal for high gradient beam profiles like those present in Intensity Modulated Radiation Therapy (IMRT) and radiosurgery. As read-out electronics we use the X-Ray Data Acquisition System (XDAS) with the Xchip developed by the CCLRC. Studies concerning the collection efficiency dependence on the polarization voltage and on the dose rate have been made in order to optimize the device operation. In the first tests we have studied dose rate and energy dependences, and signal reproducibility. Dose rate dependence was found lower than 2.5 % up to 5 Gy min−1^{-1}, and energy dependence lower than 2.1 % up to 20 cm depth in solid water. Output factors and penumbras for several rectangular fields have been measured with the linear array and were compared with the results obtained with a 0.125 cm3^{3} air ionization chamber and radiographic film, respectively. Finally, we have acquired profiles for an IMRT field and for a virtual wedge. These profiles have also been compared with radiographic film measurements. All the comparisons show a good correspondence. Signal reproducibility was within a 2% during the test period (around three months). The device has proved its capability to verify on-line therapy beams with good spatial resolution and signal to noise ratio.Comment: 16 pages, 12 figures Submitted to Phys. Med. Bio

    Avoiding Interference in Planar Arrays through the Use of Artificial Neural Networks

    Get PDF
    [Abstract] This article implements an artificial neural network to find, through computer simulation, the excitations of a square planar array. The array is composed of 52 uniformly spaced subarrays, and has a quasi- in its radiation diagram. This simulation model includes the reduction of any signal interference in the shaped radiating zone after its position has been determined

    The action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling

    Get PDF
    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of VEGF/VEGFR2 and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Taken together, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration

    Focalization of Acoustic Vortices Using Phased Array Systems

    Get PDF
    AbstractAcoustic vortices (AV) are helical wavefronts that exhibit a screw-type dislocation and a phase singularity along its principal axis of propagation, at which the pressure of the field is zero. AV can be generated using various methods among which stands out the use of phased array systems because they allow us to electronically control the acoustic beam by means of the application of a given delay law to the array elements. Little research has been reported regarding the focalization of AV to obtain a higher pressure distribution. In view of this, this work presents the study of different delay laws for generating and focusing AV. The analysis of the resultant geometry and pressure distribution of the focused beams is included. We demonstrate that it is possible to increase the pressure amplitude up to 3 times with respect to a non-focalized, at the focal distance. Experimental tests were carried out using a hexagonal multitransducer of 30 elements at 40kHz. A good agreement between simulations and experimental results was obtained

    Protein co-evolution, co-adaptation and interactions

    Get PDF
    Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution

    Testing outer boundary treatments for the Einstein equations

    Get PDF
    Various methods of treating outer boundaries in numerical relativity are compared using a simple test problem: a Schwarzschild black hole with an outgoing gravitational wave perturbation. Numerical solutions computed using different boundary treatments are compared to a `reference' numerical solution obtained by placing the outer boundary at a very large radius. For each boundary treatment, the full solutions including constraint violations and extracted gravitational waves are compared to those of the reference solution, thereby assessing the reflections caused by the artificial boundary. These tests use a first-order generalized harmonic formulation of the Einstein equations. Constraint-preserving boundary conditions for this system are reviewed, and an improved boundary condition on the gauge degrees of freedom is presented. Alternate boundary conditions evaluated here include freezing the incoming characteristic fields, Sommerfeld boundary conditions, and the constraint-preserving boundary conditions of Kreiss and Winicour. Rather different approaches to boundary treatments, such as sponge layers and spatial compactification, are also tested. Overall the best treatment found here combines boundary conditions that preserve the constraints, freeze the Newman-Penrose scalar Psi_0, and control gauge reflections.Comment: Modified to agree with version accepted for publication in Class. Quantum Gra

    Hybrid MSRM-Based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia

    Get PDF
    This paper presents an algorithm for large-scale automatic detection of burial mounds, one of the most common types of archaeological sites globally, using LiDAR and multispectral satellite data. Although previous attempts were able to detect a good proportion of the known mounds in a given area, they still presented high numbers of false positives and low precision values. Our proposed approach combines random forest for soil classification using multitemporal multispectral Sentinel-2 data and a deep learning model using YOLOv3 on LiDAR data previously pre-processed using a multi–scale relief model. The resulting algorithm significantly improves previous attempts with a detection rate of 89.5%, an average precision of 66.75%, a recall value of 0.64 and a precision of 0.97, which allowed, with a small set of training data, the detection of 10,527 burial mounds over an area of near 30,000 km2, the largest in which such an approach has ever been applied. The open code and platforms employed to develop the algorithm allow this method to be applied anywhere LiDAR data or high-resolution digital terrain models are available
    • 

    corecore