81 research outputs found

    Changes in the functional diversity of modern bird species over the last million years

    Get PDF
    Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time

    Multi-scale observations of the magnetopause Kelvin–Helmholtz waves during southward IMF

    Get PDF
    In this study, we present the first observations from the Magnetospheric Multiscale (MMS) mission of the Kelvin-Helmholtz instability (KHI) at the dusk-flank magnetopause during southward interplanetary magnetic field conditions on September 23, 2017. The instability criterion for the KHI was fulfilled for the plasma parameters observed throughout the event. An analysis of the boundary normal vectors based on the application of the timing method onto the magnetic field and the electron density data and the minimum directional derivative method onto the magnetic field data shows signatures of surface waves in the plane parallel to the velocity shear. A comparison to 2D fully kinetic simulations demonstrates reasonable consistencies with the formation of surface waves generated by the KH instability, as well as the structures of rolled-up KH waves. The observations further indicated low density faster than sheath plasma as an indicator of rolled-up vortices, which is also consistent with the simulations. All of these results show that the observed waves and vortices are most likely generated by the KH instability. High-time resolution MMS measurements further demonstrate kinetic-scale electric field fluctuations on the low-density side of the edges of surface waves. Detailed comparisons with the simulations suggest that the observed fluctuations are generated by the lower-hybrid drift instability excited by the density gradient at the edges of these surface waves. These secondary effects can lead to a flattening of the edge layers, indicating the connection between kinetic and larger scales within the KH waves and vortices

    The role of natural science collections in the biomonitoring of environmental contaminants in apex predators in support of the EU's zero pollution ambition

    Get PDF
    The chemical industry is the leading sector in the EU in terms of added value. However, contaminants pose a major threat and significant costs to the environment and human health. While EU legislation and international conventions aim to reduce this threat, regulators struggle to assess and manage chemical risks, given the vast number of substances involved and the lack of data on exposure and hazards. The European Green Deal sets a 'zero pollution ambition for a toxic free environment' by 2050 and the EU Chemicals Strategy calls for increased monitoring of chemicals in the environment. Monitoring of contaminants in biota can, inter alia: provide regulators with early warning of bioaccumulation problems with chemicals of emerging concern; trigger risk assessment of persistent, bioaccumulative and toxic substances; enable risk assessment of chemical mixtures in biota; enable risk assessment of mixtures; and enable assessment of the effectiveness of risk management measures and of chemicals regulations overall. A number of these purposes are to be addressed under the recently launched European Partnership for Risk Assessment of Chemicals (PARC). Apex predators are of particular value to biomonitoring. Securing sufficient data at European scale implies large-scale, long-term monitoring and a steady supply of large numbers of fresh apex predator tissue samples from across Europe. Natural science collections are very well-placed to supply these. Pan-European monitoring requires effective coordination among field organisations, collections and analytical laboratories for the flow of required specimens, processing and storage of specimens and tissue samples, contaminant analyses delivering pan-European data sets, and provision of specimen and population contextual data. Collections are well-placed to coordinate this. The COST Action European Raptor Biomonitoring Facility provides a well-developed model showing how this can work, integrating a European Raptor Biomonitoring Scheme, Specimen Bank and Sampling Programme. Simultaneously, the EU-funded LIFE APEX has demonstrated a range of regulatory applications using cutting-edge analytical techniques. PARC plans to make best use of such sampling and biomonitoring programmes. Collections are poised to play a critical role in supporting PARC objectives and thereby contribute to delivery of the EU's zero-pollution ambition.Non peer reviewe

    PrevalĂȘncia e fatores de risco associados Ă  infecção por Chlamydophila abortus em granjas suinĂ­colas tecnificadas no Estado de Alagoas, Brasil

    Full text link
    Objetivou-se com este estudo calcular a prevalĂȘncia e identificar os fatores de risco associados Ă  infecção por Chlamydophila abortus em suĂ­nos criados em granjas tecnificadas no Estado de Alagoas, Brasil. Para compor a amostra do estudo foram utilizados 342 suĂ­nos, sendo 312 matrizes e 30 varrĂ”es oriundos de sete granjas de ciclo completo e distribuĂ­das em cinco municĂ­pios do Estado de Alagoas. O diagnĂłstico sorolĂłgico da infecção por C. abortus foi realizado atravĂ©s da microtĂ©cnica de Fixação do Complemento (RFC). A anĂĄlise dos fatores de risco foi realizada por meio da aplicação de questionĂĄrios investigativos, constituĂ­dos por perguntas objetivas referentes ao criador, Ă s caracterĂ­sticas gerais da propriedade, ao manejo produtivo, reprodutivo e sanitĂĄrio. Observou-se prevalĂȘncia de 10,5% (36/342) de suĂ­nos soropositivos para a infecção por C. abortus, com 85,8% das granjas analisadas com animais positivos. As variĂĄveis que demonstraram associação significativa foram: utilização de bebedouros comuns para jovens e adultos (p=0,024; OR=10,83; IC=1,36-86,03) e mĂ©todo de cobertura de monta natural associada Ă  inseminação artificial (p=0,05; OR=7,62; IC=1,00-58,31). Relata-se a primeira ocorrĂȘncia de anticorpos anti-C. abortus em suĂ­nos no Brasil. Fatores como a introdução de reprodutores nos plantĂ©is e a forma de fornecimento de ĂĄgua foram evidenciados como facilitadores da infecção das matrizes neste estudo. Dessa forma, medidas de controle da infecção devem ser enfocadas nesse aspecto para evitar a disseminação do agente nas granjas suinĂ­colas e em outros plantĂ©is da regiĂŁo

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe

    Earth history and the passerine superradiation.

    Get PDF
    Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∌47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species‐level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity
    • 

    corecore