84,227 research outputs found
Optimization of micromachined relex klystrons for operation at terahertz frequencies
New micromachining techniques now provide us
with the technology to fabricate reflex klystron oscillators with dimensions suitable for operation in the terahertz region of the electromagnetic spectrum. For the success of these devices, accurate designs are required since the optimization of certain parameters is critical to obtaining useful amounts of ac power. Classical models for device design have long been in existence,
but these are no longer valid at terahertz frequencies. For this reason, we have developed a simulation tool, specifically aimed at the design of terahertz frequency reflex klystrons. The tool, based on the Monte Carlo algorithm, includes loss mechanisms and takes into account the main peculiarities expected for device
operation at terahertz frequencies. In this study, the tool is used to study the influence of the electron beam aperture angle and cavity dimensions (particularly the grid spacing) on ac power generation. The results demonstrate that aperture angles of less than 10 are necessary for the optimization of output power. It is
also found that the power output is highly sensitive to the distance between the grids
Momentum transfer to small particles by aloof electron beams
The force exerted on nanoparticles and atomic clusters by fast passing
electrons like those employed in transmission electron microscopes are
calculated and integrated over time to yield the momentum transferred from the
electrons to the particles. Numerical results are offered for metallic and
dielectric particles of different sizes (0-500 nm in diameter) as well as for
carbon nanoclusters. Results for both linear and angular momentum transfers are
presented. For the electron beam currents commonly employed in electron
microscopes, the time-averaged forces are shown to be comparable in magnitude
to laser-induced forces in optical tweezers. This opens up the possibility to
study optically-trapped particles inside transmission electron microscopes.Comment: 6 pages, 5 figure
Collective oscillations in optical matter
Atom and nanoparticle arrays trapped in optical lattices are shown to be
capable of sustaining collective oscillations of frequency proportional to the
strength of the external light field. The spectrum of these oscillations
determines the mechanical stability of the arrays. This phenomenon is studied
for dimers, strings, and two-dimensional planar arrays. Laterally confined
particles free to move along an optical channel are also considered as an
example of collective motion in partially-confined systems. The fundamental
concepts of dynamical response in optical matter introduced here constitute the
basis for potential applications to quantum information technology and signal
processing. Experimental realizations of these systems are proposed.Comment: 4 figures. Optics Express (in press
Optical absorption and energy-loss spectra of aligned carbon nanotubes
Optical-absorption cross-sections and energy-loss spectra of aligned
multishell carbon nanotubes are investigated, on the basis of photonic
band-structure calculations. A local graphite-like dielectric tensor is
assigned to every point of the tubules, and the effective transverse dielectric
function of the composite is computed by solving Maxwell's equations in media
with tensor-like dielectric functions. A Maxwell-Garnett-like approach
appropriate to the case of infinitely long anisotropic tubules is also
developed. Our full calculations indicate that the experimentally measured
macroscopic dielectric function of carbon nanotube materials is the result of a
strong electromagnetic coupling between the tubes. An analysis of the
electric-field pattern associated with this coupling is presented, showing that
in the close-packed regime the incident radiation excites a very localized
tangential surface plasmon.Comment: 7 pages, 12 figures, to appear in Eur. Phys. J.
Single-atom control of the optoelectronic response in sub-nanometric cavities
By means of ab-initio time dependent density functional theory calculations
carried out on an prototypical hybrid plasmonic device (two metallic
nanoparticles bridged by a one-atom junction), we demonstrate the strong
interplay between photoinduced excitation of localized surface plasmons and
electron transport through the single atom. Such an interplay is remarkably
sensitive to the atomic orbitals of the junction. Therefore, we show the
possibility of a twofold tuning (plasmonic response and photoinduced current
across the juntion) just by changing a single atom in the device.Comment: 5 pages, 5 figure
Electron energy loss in carbon nanostructures
The response of fullerenes and carbon nanotubes is investigated by
representing each carbon atom by its atomic polarizability. The polarization of
each carbon atom produces an induced dipole that is the result of the
interaction with a given external field plus the mutual interaction among
carbon atoms. The polarizability is obtained from the dielectric function of
graphite after invoking the Clausius-Mossotti relation. This formalism is
applied to the simulation of electron energy loss spectra both in fullerenes
and in carbon nanotubes. The case of broad electron beams is considered and the
loss probability is analyzed in detail as a function of the electron deflection
angle within a fully quantum-mechanical description of the electrons. A general
good agreement with available experiments is obtained in a wide range of probe
energies between 1 keV and 60 keV.Comment: 8 pages, 6 figures, submitted to PR
- …