3,079 research outputs found
A continued fraction generator for smooth pulse sequences
Digital circuit produces rational output pulse rate at fraction of continuous input pulse rate. Output pulses have average rate with least possible deviation from absolute correct time spacing. Circuit uses include frequency synthesizing, fraction generation, and approximation of irrational sequences
Scalable Methods for Adaptively Seeding a Social Network
In recent years, social networking platforms have developed into
extraordinary channels for spreading and consuming information. Along with the
rise of such infrastructure, there is continuous progress on techniques for
spreading information effectively through influential users. In many
applications, one is restricted to select influencers from a set of users who
engaged with the topic being promoted, and due to the structure of social
networks, these users often rank low in terms of their influence potential. An
alternative approach one can consider is an adaptive method which selects users
in a manner which targets their influential neighbors. The advantage of such an
approach is that it leverages the friendship paradox in social networks: while
users are often not influential, they often know someone who is.
Despite the various complexities in such optimization problems, we show that
scalable adaptive seeding is achievable. In particular, we develop algorithms
for linear influence models with provable approximation guarantees that can be
gracefully parallelized. To show the effectiveness of our methods we collected
data from various verticals social network users follow. For each vertical, we
collected data on the users who responded to a certain post as well as their
neighbors, and applied our methods on this data. Our experiments show that
adaptive seeding is scalable, and importantly, that it obtains dramatic
improvements over standard approaches of information dissemination.Comment: Full version of the paper appearing in WWW 201
An electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling
Based on density functional theory, the electronic and optical properties of
hybrid organic/perovskite crystals are thoroughly investigated. We consider the
mono-crystalline 4FPEPI as material model and demonstrate the optical process
is governed by three active Bloch states at the {\Gamma} point of the reduced
Brillouin zone with a reverse ordering compared to tetrahedrally bonded
semiconductors. Giant spin-orbit coupling effects and optical activities are
subsequently inferred from symmetry analysis.Comment: 17 pages, 6 figure
Functionally Specified Distributed Transactions in Co-operative Scenarios
Addresses the problem of specifying co-operative, distributed transactions in a manner that can be subject to verification and testing. Our approach combines the process-algebraic language LOTOS and the object-oriented database modelling language TM to obtain a clear and formal protocol for distributed database transactions meant to describe co-operation scenarios. We argue that a separation of concerns, namely the interaction of database applications on the one hand and data modelling on the other, results in a practical, modular approach that is formally well-founded. An advantage of this is that we may vary over transaction models to support the language combinatio
Subset feedback vertex set is fixed parameter tractable
The classical Feedback Vertex Set problem asks, for a given undirected graph
G and an integer k, to find a set of at most k vertices that hits all the
cycles in the graph G. Feedback Vertex Set has attracted a large amount of
research in the parameterized setting, and subsequent kernelization and
fixed-parameter algorithms have been a rich source of ideas in the field.
In this paper we consider a more general and difficult version of the
problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an
instance comes additionally with a set S ? V of vertices, and we ask for a set
of at most k vertices that hits all simple cycles passing through S. Because of
its applications in circuit testing and genetic linkage analysis SUBSET-FVS was
studied from the approximation algorithms perspective by Even et al.
[SICOMP'00, SIDMA'00].
The question whether the SUBSET-FVS problem is fixed-parameter tractable was
posed independently by Kawarabayashi and Saurabh in 2009. We answer this
question affirmatively. We begin by showing that this problem is
fixed-parameter tractable when parametrized by |S|. Next we present an
algorithm which reduces the given instance to 2^k n^O(1) instances with the
size of S bounded by O(k^3), using kernelization techniques such as the
2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow
us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback
Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1
Improved Algorithms for Decremental Single-Source Reachability on Directed Graphs
Recently we presented the first algorithm for maintaining the set of nodes
reachable from a source node in a directed graph that is modified by edge
deletions with total update time, where is the number of edges and
is the number of nodes in the graph [Henzinger et al. STOC 2014]. The
algorithm is a combination of several different algorithms, each for a
different vs. trade-off. For the case of the
running time is , just barely below . In
this paper we simplify the previous algorithm using new algorithmic ideas and
achieve an improved running time of . This gives,
e.g., for the notorious case . We obtain the
same upper bounds for the problem of maintaining the strongly connected
components of a directed graph undergoing edge deletions. Our algorithms are
correct with high probabililty against an oblivious adversary.Comment: This paper was presented at the International Colloquium on Automata,
Languages and Programming (ICALP) 2015. A full version combining the findings
of this paper and its predecessor [Henzinger et al. STOC 2014] is available
at arXiv:1504.0795
Extreme Supernova Models for the Superluminous Transient ASASSN-15lh
The recent discovery of the unprecedentedly superluminous transient
ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the
power-input models that have been proposed for superluminous supernovae. Here
we examine some of the few viable interpretations of ASASSN-15lh in the context
of a stellar explosion, involving combinations of one or more power inputs. We
model the lightcurve of ASASSN-15lh with a hybrid model that includes
contributions from magnetar spin-down energy and hydrogen-poor circumstellar
interaction. We also investigate models of pure circumstellar interaction with
a massive hydrogen-deficient shell and discuss the lack of interaction features
in the observed spectra. We find that, as a supernova ASASSN-15lh can be best
modeled by the energetic core-collapse of a ~40 Msun star interacting with a
hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass
are consistent with a rapidly rotating pulsational pair-instability supernova
progenitor as required for strong interaction following the final supernova
explosion. Additional energy injection by a magnetar with initial period of 1-2
ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity
required to overcome the deficit in single-component models, but this requires
more fine-tuning and extreme parameters for the magnetar, as well as the
assumption of efficient conversion of magnetar energy into radiation. We thus
favor a single-input model where the reverse shock formed in a strong SN
ejecta-CSM interaction following a very powerful core-collapse SN explosion can
supply the luminosity needed to reproduce the late-time UV-bright plateau.Comment: 8 pages, 3 figure
Hydrodynamic Limit for an Hamiltonian System with Boundary Conditions and Conservative Noise
We study the hyperbolic scaling limit for a chain of N coupled anharmonic
oscillators. The chain is attached to a point on the left and there is a force
(tension) acting on the right. In order to provide good ergodic
properties to the system, we perturb the Hamiltonian dynamics with random local
exchanges of velocities between the particles, so that momentum and energy are
locally conserved. We prove that in the macroscopic limit the distributions of
the elongation, momentum and energy, converge to the solution of the Euler
system of equations, in the smooth regime.Comment: New deeply revised version. 1 figure adde
The relationship between two flavors of oblivious transfer at the quantum level
Though all-or-nothing oblivious transfer and one-out-of-two oblivious
transfer are equivalent in classical cryptography, we here show that due to the
nature of quantum cryptography, a protocol built upon secure quantum
all-or-nothing oblivious transfer cannot satisfy the rigorous definition of
quantum one-out-of-two oblivious transfer.Comment: 4 pages, no figur
- âŠ