726 research outputs found

    Recommendations to improve wildlife exposure estimation for development of soil screening and cleanup values

    Get PDF
    An integral component in the development of media-specific values for the ecological risk assessment of chemicals is the derivation of safe levels of exposure for wildlife. Although the derivation and subsequent application of these values can be used for screening purposes, there is a need to identify the threshold for effects when making remedial decisions during site-specific assessments. Methods for evaluation of wildlife exposure are included in the US Environmental Protection Agency (USEPA) ecological soil screening levels (Eco-SSLs), registration, evaluation, authorization, and restriction of chemicals (REACH), and other risk-based soil assessment approaches. The goal of these approaches is to ensure that soil-associated contaminants do not pose a risk to wildlife that directly ingest soil, or to species that may be exposed to contaminants that persist in the food chain. These approaches incorporate broad assumptions in the exposure and effects assessments and in the risk characterization process. Consequently, thresholds for concluding risk are frequently very low with conclusions of risk possible when soil metal concentrations fall in the range of natural background. A workshop held in September, 2012 evaluated existing methods and explored recent science about factors to consider when establishing appropriate remedial goals for concentrations of metals in soils. A Foodweb Exposure Workgroup was organized to evaluate methods for quantifying exposure of wildlife to soil-associated metals through soil and food consumption and to provide recommendations for the development of ecological soil cleanup values (Eco-SCVs) that are both practical and scientifically defensible. The specific goals of this article are to review the current practices for quantifying exposure of wildlife to soil-associated contaminants via bioaccumulation and trophic transfer, to identify potential opportunities for refining and improving these exposure estimates, and finally, to make recommendations for application of these improved models to the development of site-specific remedial goals protective of wildlife. Although the focus is on metals contamination, many of the methods and tools discussed are also applicable to organic contaminants. The conclusion of this workgroup was that existing exposure estimation models are generally appropriate when fully expanded and that methods are generally available to develop more robust site-specific exposure estimates. Improved realism in site-specific wildlife Eco-SCVs could be achieved by obtaining more realistic estimates for diet composition, bioaccumulation, bioavailability and/or bioaccessibility, soil ingestion, spatial aspects of exposure, and target organ exposure. These components of wildlife exposure estimation should be developed on a site-, species-, and analyte-specific basis to the extent that the expense for their derivation is justified by the value they add to Eco-SCV development

    Neurofilament light plasma concentration positively associates with age and negatively associates with weight and height in the dog

    Get PDF
    Plasma neurofilament light chain (pNfL) concentration is a biomarker for neuroaxonal injury and degeneration and can be used to monitor response to treatment. Spontaneous canine neurodegenerative diseases are a valuable comparative resource for understanding similar human conditions and as large animal treatment models. The features of pNfL concentration in healthy dogs is not well established. We present data reporting basic pNfL concentration trends in the Labrador Retriever breed. Fifty-five Labrador Retrievers were enrolled. pNfL concentration was measured and correlated to age, sex, neuter status, height, weight, body mass index, and coat color. We found increased pNfL with age (P < 0.0001), shorter stature (P = 0.009) and decreased body weight (P < 0.001). These are similar to findings reported in humans. pNfL concentration did not correlate with sex, BMI or coat color. This data further supports findings that pNfL increase with age in a canine population but highlights a need to consider weight and height when determining normal pNfL concentration in canine populations

    Jamming and Fluctuations in Granular Drag

    Full text link
    We investigate the dynamic evolution of jamming in granular media through fluctuations in the granular drag force. The successive collapse and formation of jammed states give a stick-slip nature to the fluctuations which is independent of the contact surface between the grains and the dragged object -- thus implying that the stress-induced collapse is nucleated in the bulk of the granular sample. We also find that while the fluctuations are periodic at small depths, they become "stepped" at large depths, a transition which we interpret as a consequence of the long-range nature of the force chains.Comment: 7 pages, 4 figures, RevTe

    Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor

    Get PDF
    We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A = -4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections

    A General Modeling Framework for Describing Spatially Structured Population Dynamics

    Get PDF
    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network‐based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life‐history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network‐based population is modeled with discrete time steps. Using both theoretical and real‐world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network‐based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles

    Impact of Long-Term Swine and Poultry Manure Application on Soil and Water Resources in Eastern Oklahoma

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.

    Get PDF
    This study combines non-invasive mechanical testing with finite element (FE) modelling to assess for the first time the reliability of shear wave (SW) elastography for the quantitative assessment of the in-vivo nonlinear mechanical behavior of heel-pad. The heel-pads of five volunteers were compressed using a custom-made ultrasound indentation device. Tissue deformation was assessed from B-mode ultrasound and force was measured using a load cell to calculate the force - deformation graph of the indentation test. These results were used to design subject specific FE models and to inverse engineer the tissue's hyperelastic material coefficients and its stress - strain behavior. SW speed was measured for different levels of compression (from 0% to 50% compression). SW speed for 0% compression was used to assess the initial stiffness of heel-pad (i.e. initial shear modulus, initial Young's modulus). Changes in SW speed with increasing compressive loading were used to quantify the tissue's nonlinear mechanical behavior based on the theory of acoustoelasticity. Statistical analysis of results showed significant correlation between SW-based and FE-based estimations of initial stiffness, but SW underestimated initial shear modulus by 64%(±16). A linear relationship was found between the SW-based and FE-based estimations of nonlinear behavior. The results of this study indicate that SW elastography is capable of reliably assessing differences in stiffness, but the absolute values of stiffness should be used with caution. Measuring changes in SW speed for different magnitudes of compression enables the quantification of the tissue's nonlinear behavior which can significantly enhance the diagnostic value of SW elastography. [Abstract copyright: Copyright © 2018 Elsevier Ltd. All rights reserved.

    Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor

    Get PDF
    We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2= 0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/- 0.58(sys)ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Illness Mapping: A time and cost effective method to estimate healthcare data needed to establish community-based health insurance

    Get PDF
    Background: Most healthcare spending in developing countries is private out-of-pocket. One explanation for low penetration of health insurance is that poorer individuals doubt their ability to enforce insurance contracts. Community-based health insurance schemes (CBHI) are a solution, but launching CBHI requires obtaining accurate local data on morbidity, healthcare utilization and other details to inform package design and pricing. We developed the "Illness Mapping" method (IM) for data collection (faster and cheaper than household surveys). Methods. IM is a modification of two non-interactive consensus group methods (Delphi and Nominal Group Technique) to operate as interactive methods. We elicited estimates from "Experts" in the target community on morbidity and healthcare utilization. Interaction between facilitator and experts became essential to bridge literacy constraints and to reach consensus.The study was conducted in Gaya District, Bihar (India) during April-June 2010. The intervention included the IM and a household survey (HHS). IM included 18 women's and 17 men's groups. The HHS was conducted in 50 villages with1,000 randomly selected households (6,656 individuals). Results: We found good agreement between the two methods on overall prevalence of illness (IM: 25.9% ±3.6; HHS: 31.4%) and on prevalence of acute (IM: 76.9%; HHS: 69.2%) and chronic illnesses (IM: 20.1%; HHS: 16.6%). We also found good agreement on incidence of deliveries (IM: 3.9% ±0.4; HHS: 3.9%), and on hospital deliveries (IM: 61.0%. ± 5.4; HHS: 51.4%). For hospitalizations, we obtained a lower estimate from the IM (1.1%) than from the HHS (2.6%). The IM required less time and less person-power than a household survey, which translate into reduced costs. Conclusions: We have shown that our Illness Mapping method can be carried out at lower financial and human cost for sourcing essential local data, at acceptably accurate levels. In view of the good fit of results obtained, we assume that the method could work elsewhere as well
    corecore