596 research outputs found
Resonance Lifetimes from Complex Densities
The ab-initio calculation of resonance lifetimes of metastable anions
challenges modern quantum-chemical methods. The exact lifetime of the
lowest-energy resonance is encoded into a complex "density" that can be
obtained via complex-coordinate scaling. We illustrate this with one-electron
examples and show how the lifetime can be extracted from the complex density in
much the same way as the ground-state energy of bound systems is extracted from
its ground-state density
Many Body Theory of Charge Transfer in Hyperthermal Atomic Scattering
We use the Newns-Anderson Hamiltonian to describe many-body electronic
processes that occur when hyperthermal alkali atoms scatter off metallic
surfaces. Following Brako and Newns, we expand the electronic many-body
wavefunction in the number of particle-hole pairs (we keep terms up to and
including a single particle-hole pair). We extend their earlier work by
including level crossings, excited neutrals and negative ions. The full set of
equations of motion are integrated numerically, without further approximations,
to obtain the many-body amplitudes as a function of time. The velocity and
work-function dependence of final state quantities such as the distribution of
ion charges and excited atomic occupancies are compared with experiment. In
particular, experiments that scatter alkali ions off clean Cu(001) surfaces in
the energy range 5 to 1600 eV constrain the theory quantitatively. The
neutralization probability of Na ions shows a minimum at intermediate
velocity in agreement with the theory. This behavior contrasts with that of
K, which shows ... (7 figures, not included. Figure requests:
[email protected])Comment: 43 pages, plain TeX, BUP-JBM-
Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near Infra-Red
Optical resonances spanning the Near and Short Infra-Red spectral regime were
exhibited experimentally by arrays of plasmonic nano-particles with concave
cross-section. The concavity of the particle was shown to be the key ingredient
for enabling the broad band tunability of the resonance frequency, even for
particles with dimensional aspect ratios of order unity. The atypical
flexibility of setting the resonance wavelength is shown to stem from a unique
interplay of local geometry with surface charge distributions
Robust plasmon waveguides in strongly-interacting nanowire arrays
Arrays of parallel metallic nanowires are shown to provide a tunable, robust,
and versatile platform for plasmon interconnects, including high-curvature
turns with minimum signal loss. The proposed guiding mechanism relies on gap
plasmons existing in the region between adjacent nanowires of dimers and
multi-wire arrays. We focus on square and circular silver nanowires in silica,
for which excellent agreement between both boundary element method and multiple
multipolar expansion calculations is obtained. Our work provides the tools for
designing plasmon-based interconnects and achieving high degree of integration
with minimum cross talk between adjacent plasmon guides.Comment: 4 pages, 5 figure
Compilation of extended recursion in call-by-value functional languages
This paper formalizes and proves correct a compilation scheme for
mutually-recursive definitions in call-by-value functional languages. This
scheme supports a wider range of recursive definitions than previous methods.
We formalize our technique as a translation scheme to a lambda-calculus
featuring in-place update of memory blocks, and prove the translation to be
correct.Comment: 62 pages, uses pi
Room Temperature Kondo effect in atom-surface scattering: dynamical 1/N approach
The Kondo effect may be observable in some atom-surface scattering
experiments, in particular, those involving alkaline-earth atoms. By combining
Keldysh techniques with the NCA approximation to solve the time-dependent
Newns-Anderson Hamiltonian in the infinite-U limit, Shao, Nordlander and
Langreth found an anomalously strong surface-temperature dependence of the
outgoing charge state fractions. Here we employ the dynamical 1/N expansion
with finite Coulomb interaction U to provide a more realistic description of
the scattering process. We test the accuracy of the 1/N expansion in the
spinless N = 1 case against the exact independent-particle solution. We then
compare results obtained in the infinite-U limit with the NCA approximation and
recover qualitative features found previously. Finally, we analyze the
realistic situation of Ca atoms with U = 5.8 eV scattered off Cu(001) surfaces.
Although the presence of the doubly-ionized Ca species can change the absolute
scattered positive Ca yields, the temperature dependence is qualitatively the
same as that found in the infinite-U limit. One of the main difficulties that
experimentalists face in attempting to detect this effect is that the atomic
velocity must be kept small enough to reduce possible kinematic smearing of the
metal's Fermi surface.Comment: 15 pages, 10 Postscript figures; references and typos correcte
Tractable non-local correlation density functionals for flat surfaces and slabs
A systematic approach for the construction of a density functional for van
der Waals interactions that also accounts for saturation effects is described,
i.e. one that is applicable at short distances. A very efficient method to
calculate the resulting expressions in the case of flat surfaces, a method
leading to an order reduction in computational complexity, is presented.
Results for the interaction of two parallel jellium slabs are shown to agree
with those of a recent RPA calculation (J.F. Dobson and J. Wang, Phys. Rev.
Lett. 82, 2123 1999). The method is easy to use; its input consists of the
electron density of the system, and we show that it can be successfully
approximated by the electron densities of the interacting fragments. Results
for the surface correlation energy of jellium compare very well with those of
other studies. The correlation-interaction energy between two parallel jellia
is calculated for all separations d, and substantial saturation effects are
predicted.Comment: 10 pages, 6 figure
The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group
While the properties of the Kondo model in equilibrium are very well
understood, much less is known for Kondo systems out of equilibrium. We study
the properties of a quantum dot in the Kondo regime, when a large bias voltage
V and/or a large magnetic field B is applied. Using the perturbative
renormalization group generalized to stationary nonequilibrium situations, we
calculate renormalized couplings, keeping their important energy dependence. We
show that in a magnetic field the spin occupation of the quantum dot is
non-thermal, being controlled by V and B in a complex way to be calculated by
solving a quantum Boltzmann equation. We find that the well-known suppression
of the Kondo effect at finite V>>T_K (Kondo temperature) is caused by inelastic
dephasing processes induced by the current through the dot. We calculate the
corresponding decoherence rate, which serves to cut off the RG flow usually
well inside the perturbative regime (with possible exceptions). As a
consequence, the differential conductance, the local magnetization, the spin
relaxation rates and the local spectral function may be calculated for large
V,B >> T_K in a controlled way.Comment: 9 pages, invited paper for a special edition of JPSJ "Kondo Effect --
40 Years after the Discovery", some typos correcte
- …