7,936 research outputs found

    Crystal-to-crystal transition of ultrasoft colloids under shear

    Full text link
    Ultrasoft colloids typically do not spontaneously crystallize, but rather vitrify, at high concentrations. Combining in-situ rheo-SANS experiments and numerical simulations we show that shear facilitates crystallization of colloidal star polymers in the vicinity of their glass transition. With increasing shear rate well beyond rheological yielding, a transition is found from an initial bcc-dominated structure to an fcc-dominated one. This crystal-to-crystal transition is not accompanied by intermediate melting but occurs via a sudden reorganization of the crystal structure. Our results provide a new avenue to tailor colloidal crystallization and crystal-to-crystal transition at molecular level by coupling softness and shear

    Control of unstable steady states by time-delayed feedback methods

    Full text link
    We show that time-delayed feedback methods, which have successfully been used to control unstable periodic ortbits, provide a tool to stabilize unstable steady states. We present an analytical investigation of the feedback scheme using the Lambert function and discuss effects of both a low-pass filter included in the control loop and non-zero latency times associated with the generation and injection of the feedback signal.Comment: 8 pages, 11 figure

    Controlling extended systems with spatially filtered, time-delayed feedback

    Full text link
    We investigate a control technique for spatially extended systems combining spatial filtering with a previously studied form of time-delay feedback. The scheme is naturally suited to real-time control of optical systems. We apply the control scheme to a model of a transversely extended semiconductor laser in which a desirable, coherent traveling wave state exists, but is a member of a nowhere stable family. Our scheme stabilizes this state, and directs the system towards it from realistic, distant and noisy initial conditions. As confirmed by numerical simulation, a linear stability analysis about the controlled state accurately predicts when the scheme is successful, and illustrates some key features of the control including the individual merit of, and interplay between, the spatial and temporal degrees of freedom in the control.Comment: 9 pages REVTeX including 7 PostScript figures. To appear in Physical Review

    Restricted feedback control of one-dimensional maps

    Full text link
    Dynamical control of biological systems is often restricted by the practical constraint of unidirectional parameter perturbations. We show that such a restriction introduces surprising complexity to the stability of one-dimensional map systems and can actually improve controllability. We present experimental cardiac control results that support these analyses. Finally, we develop new control algorithms that exploit the structure of the restricted-control stability zones to automatically adapt the control feedback parameter and thereby achieve improved robustness to noise and drifting system parameters.Comment: 29 pages, 9 embedded figure

    Laser driven launch vehicles for continuous access to space

    Get PDF
    The availability of megawatt laser systems in the next century will make laser launch systems from ground to orbit feasible and useful. Systems studies indicate launch capabilities of 1 ton payload per gigawatt laser power. Recent research in ground to orbit laser propulsion has emphasized laser supported detonation wave thrusters driven by repetitively pulsed infrared lasers. In this propulsion concept each laser repetition cycle consists of two pulses. A lower energy first pulse is used to vaporize a small amount of solid propellant and then after a brief expansion period, a second and higher energy laser pulse is used to drive a detonation wave through the expanded vapor. The results are reported of numerical studies comparing the detonation wave properties of various candidate propellants, and the simulation of thruster performance under realistic conditions. Experimental measurements designed to test the theoretical predictions are also presented. Measurements are discussed of radiance and opacity in absorption waves, and mass loss and momentum transfer. These data are interpreted in terms of specific impulse and energy conversion efficiency

    Heat transport by turbulent Rayleigh-B\'enard convection for $\Pra\ \simeq 0.8and and 3\times 10^{12} \alt \Ra\ \alt 10^{15}:Aspectratio: Aspect ratio \Gamma = 0.50$

    Full text link
    We report experimental results for heat-transport measurements, in the form of the Nusselt number \Nu, by turbulent Rayleigh-B\'enard convection in a cylindrical sample of aspect ratio ΓD/L=0.50\Gamma \equiv D/L = 0.50 (D=1.12D = 1.12 m is the diameter and L=2.24L = 2.24 m the height). The measurements were made using sulfur hexafluoride at pressures up to 19 bars as the fluid. They are for the Rayleigh-number range 3\times 10^{12} \alt \Ra \alt 10^{15} and for Prandtl numbers \Pra\ between 0.79 and 0.86. For \Ra < \Ra^*_1 \simeq 1.4\times 10^{13} we find \Nu = N_0 \Ra^{\gamma_{eff}} with γeff=0.312±0.002\gamma_{eff} = 0.312 \pm 0.002, consistent with classical turbulent Rayleigh-B\'enard convection in a system with laminar boundary layers below the top and above the bottom plate. For \Ra^*_1 < \Ra < \Ra^*_2 (with \Ra^*_2 \simeq 5\times 10^{14}) γeff\gamma_{eff} gradually increases up to 0.37±0.010.37\pm 0.01. We argue that above \Ra^*_2 the system is in the ultimate state of convection where the boundary layers, both thermal and kinetic, are also turbulent. Several previous measurements for Γ=0.50\Gamma = 0.50 are re-examined and compared with the present results.Comment: 44 pages, 18 figures, submitted to NJ

    Boolean Chaos

    Full text link
    We observe deterministic chaos in a simple network of electronic logic gates that are not regulated by a clocking signal. The resulting power spectrum is ultra-wide-band, extending from dc to beyond 2 GHz. The observed behavior is reproduced qualitatively using an autonomously updating Boolean model with signal propagation times that depend on the recent history of the gates and filtering of pulses of short duration, whose presence is confirmed experimentally. Electronic Boolean chaos may find application as an ultra-wide-band source of radio wavesComment: 10 pages and 4 figur

    OH 1720 MHz Masers in Supernova Remnants --- C-Shock Indicators

    Get PDF
    Recent observations show that the OH 1720 MHz maser is a powerful probe of the shocked region where a supernova remnant strikes a molecular cloud. We perform a thorough study of the pumping of this maser and find tight constraints on the physical conditions needed for its production. The presence of the maser implies moderate temperatures (50 -- 125 K) and densities (105cm3\sim 10^5 cm^{-3}), and OH column densities of order 1016cm210^{16} cm^{-2}. We show that these conditions can exist only if the shocks are of C-type. J-shocks fail by such a wide margin that the presence of this maser could become the most powerful indicator of C-shocks. These conditions also mean that the 1720 MHz maser will be inherently weak compared to the other ground state OH masers. All the model predictions are in good agreement with the observations.Comment: 16 pages, 5 Postscript figures (included), uses aaspp4.sty. To appear in the Astrophysical Journa

    Threshold and linewidth of a mirrorless parametric oscillator

    Get PDF
    We analyze the above-threshold behavior of a mirrorless parametric oscillator based on resonantly enhanced four wave mixing in a coherently driven dense atomic vapor. It is shown that, in the ideal limit, an arbitrary small flux of pump photons is sufficient to reach the oscillator threshold. We demonstrate that due to the large group-velocity delays associated with coherent media, an extremely narrow oscillator linewidth is possible, making a narrow-band source of non-classical radiation feasible.Comment: revised version to appear in Phys.Rev.Lett., contains discussion on threshold conditions and operation on few-photon leve

    Assessment of the potential in vivo ecotoxicity of Double-Walled Carbon Nanotubes (DWNTs) in water, using the amphibian Ambystoma mexicanum

    Get PDF
    Because of their specific properties (mechanical, electrical, etc), carbon nanotubes (CNTs) are being assessed for inclusion in many manufactured products. Due to their massive production and number of potential applications, the impact of CNTs on the environment must be taken into consideration. The present investigation evaluates the ecotoxic potential of CNTs in the amphibian larvae (Ambystoma mexicanum). Acute toxicity and genotoxicity were analysed after 12 days of exposure in laboratory conditions. The genotoxic effects were analysed by scoring the micronucleated erythrocytes in the circulating blood of the larvae according to the French standard micronucleus assay. The results obtained in the present study demonstrated that CNTs are neither acutely toxic nor genotoxic to larvae whatever the CNTs concentration in the water, although black masses of CNTs were observed inside the gut. In the increasing economical context of CNTs, complementary studies must be undertaken, especially including mechanistic and environmental investigations
    corecore