733 research outputs found
Ultra-dense magnetoresistive mass memory
This report details the progress and accomplishments of Nonvolatile Electronics (NVE), Inc., on the design of the wafer scale MRAM mass memory system during the fifth quarter of the project. NVE has made significant progress this quarter on the one megabit design in several different areas. A test chip, which will verify a working GMR bit with the dimensions required by the 1 Meg chip, has been designed, laid out, and is currently being processed in the NVE labs. This test chip will allow electrical specifications, tolerances, and processing issues to be finalized before construction of the actual chip, thus providing a greater assurance of success of the final 1 Meg design. A model has been developed to accurately simulate the parasitic effects of unselected sense lines. This model gives NVE the ability to perform accurate simulations of the array electronic and test different design concepts. Much of the circuit design for the 1 Meg chip has been completed and simulated and these designs are included. Progress has been made in the wafer scale design area to verify the reliable operation of the 16 K macrocell. This is currently being accomplished with the design and construction of two stand alone test systems which will perform life tests and gather data on reliabiliy and wearout mechanisms for analysis
Spacecraft Observations And Analytic Theory Of Crescent-Shaped Electron Distributions In Asymmetric Magnetic Reconnection
Supported by a kinetic simulation, we derive an exclusion energy parameter providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low density separatrix. Egedal, J; Le, A; Daughton, W; Wetherton, B; Cassak, P A; Chen, L -J; Lavraud, B; Trobert, R B; Dorelli, J; Gershman, D J; Avanov, L
Spacecraft observations and analytic theory of crescent-shaped electron distributions in asymmetric magnetic reconnection
Supported by a kinetic simulation, we derive an exclusion energy parameter
providing a lower kinetic energy bound for an electron to cross
from one inflow region to the other during magnetic reconnection. As by a
Maxwell Demon, only high energy electrons are permitted to cross the inner
reconnection region, setting the electron distribution function observed along
the low density side separatrix during asymmetric reconnection. The analytic
model accounts for the two distinct flavors of crescent-shaped electron
distributions observed by spacecraft in a thin boundary layer along the low
density separatrix.Comment: 6 pages, 3 figure
Vortex core size in interacting cylindrical nanodot arrays
The effect of dipolar interactions among cylindrical nanodots, with a
vortex-core magnetic configuration, is analyzed by means of analytical
calculations. The cylinders are placed in a N x N square array in two
configurations - core oriented parallel to each other and with antiparallel
alignment between nearest neighbors. Results comprise the variation in the core
radius with the number of interacting dots, the distance between them and dot
height. The dipolar interdot coupling leads to a decrease (increase) of the
core radius for parallel (antiparallel) arrays
The Force Balance of Electrons During Kinetic Anti-parallel Magnetic Reconnection
Fully kinetic simulations are applied to the study of 2D anti-parallel
reconnection, elucidating the dynamics by which the electron fluid maintains
force balance within both the electron diffusion region (EDR) and the ion
diffusion region (IDR). Inside the IDR, magnetic field-aligned electron
pressure anisotropy ( develops upstream of the
EDR. Compared to previous investigations, the use of modern computer facilities
allows for simulations at the natural proton to electron mass ratio
. In this high--limit the electron dynamics changes
qualitatively, as the electron inflow to the EDR is enhanced and mainly driven
by the anisotropic pressure. Using a coordinate system with the -direction
aligned with the reconnecting magnetic field and the -direction aligned with
the central current layer, it is well-known that for the much studied 2D
laminar anti-parallel and symmetric scenario the reconnection electric field at
the -line must be balanced by the and
off-diagonal electron pressure stress
components. We find that the electron anisotropy upstream of the EDR imposes
large values of within the EDR, and along the
direction of the reconnection -line this stress cancels with the stress of a
previously determined theoretical form for . The
electron frozen-in law is instead broken by pressure tensor gradients related
to the direct heating of the electrons by the reconnection electric field. The
reconnection rate is free to adjust to the value imposed externally by the
plasma dynamics at larger scales.Comment: Submitted to Physics of Plasmas, 11 October 202
Influence of the Lower Hybrid Drift Instability on the onset of Magnetic Reconnection
Two-dimensional and three-dimensional kinetic simulation results reveal the
importance of the Lower-Hybrid Drift Instability LHDI to the onset of magnetic
reconnection. Both explicit and implicit kinetic simulations show that the LHDI
heats electrons anisotropically and increases the peak current density. Linear
theory predicts these modifications can increase the growth rate of the tearing
instability by almost two orders of magnitude and shift the fastest growing
modes to significantly shorter wavelengths. These predictions are confirmed by
nonlinear kinetic simulations in which the growth and coalescence of small
scale magnetic islands leads to a rapid onset of large scale reconnection
Quantum field theory on a growing lattice
We construct the classical and canonically quantized theories of a massless
scalar field on a background lattice in which the number of points--and hence
the number of modes--may grow in time. To obtain a well-defined theory certain
restrictions must be imposed on the lattice. Growth-induced particle creation
is studied in a two-dimensional example. The results suggest that local mode
birth of this sort injects too much energy into the vacuum to be a viable model
of cosmological mode birth.Comment: 28 pages, 2 figures; v.2: added comments on defining energy, and
reference
- …