733 research outputs found

    Ultra-dense magnetoresistive mass memory

    Get PDF
    This report details the progress and accomplishments of Nonvolatile Electronics (NVE), Inc., on the design of the wafer scale MRAM mass memory system during the fifth quarter of the project. NVE has made significant progress this quarter on the one megabit design in several different areas. A test chip, which will verify a working GMR bit with the dimensions required by the 1 Meg chip, has been designed, laid out, and is currently being processed in the NVE labs. This test chip will allow electrical specifications, tolerances, and processing issues to be finalized before construction of the actual chip, thus providing a greater assurance of success of the final 1 Meg design. A model has been developed to accurately simulate the parasitic effects of unselected sense lines. This model gives NVE the ability to perform accurate simulations of the array electronic and test different design concepts. Much of the circuit design for the 1 Meg chip has been completed and simulated and these designs are included. Progress has been made in the wafer scale design area to verify the reliable operation of the 16 K macrocell. This is currently being accomplished with the design and construction of two stand alone test systems which will perform life tests and gather data on reliabiliy and wearout mechanisms for analysis

    Spacecraft Observations And Analytic Theory Of Crescent-Shaped Electron Distributions In Asymmetric Magnetic Reconnection

    Get PDF
    Supported by a kinetic simulation, we derive an exclusion energy parameter EX\cal{E}_X providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low density separatrix. Egedal, J; Le, A; Daughton, W; Wetherton, B; Cassak, P A; Chen, L -J; Lavraud, B; Trobert, R B; Dorelli, J; Gershman, D J; Avanov, L

    Spacecraft observations and analytic theory of crescent-shaped electron distributions in asymmetric magnetic reconnection

    Get PDF
    Supported by a kinetic simulation, we derive an exclusion energy parameter EX\cal{E}_X providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low density separatrix.Comment: 6 pages, 3 figure

    Vortex core size in interacting cylindrical nanodot arrays

    Full text link
    The effect of dipolar interactions among cylindrical nanodots, with a vortex-core magnetic configuration, is analyzed by means of analytical calculations. The cylinders are placed in a N x N square array in two configurations - core oriented parallel to each other and with antiparallel alignment between nearest neighbors. Results comprise the variation in the core radius with the number of interacting dots, the distance between them and dot height. The dipolar interdot coupling leads to a decrease (increase) of the core radius for parallel (antiparallel) arrays

    The Force Balance of Electrons During Kinetic Anti-parallel Magnetic Reconnection

    Full text link
    Fully kinetic simulations are applied to the study of 2D anti-parallel reconnection, elucidating the dynamics by which the electron fluid maintains force balance within both the electron diffusion region (EDR) and the ion diffusion region (IDR). Inside the IDR, magnetic field-aligned electron pressure anisotropy (pe∥≫pe⊥)p_{e\parallel}\gg p_{e\perp}) develops upstream of the EDR. Compared to previous investigations, the use of modern computer facilities allows for simulations at the natural proton to electron mass ratio mi/me=1836m_i/m_e=1836. In this high-mi/mem_i/m_e-limit the electron dynamics changes qualitatively, as the electron inflow to the EDR is enhanced and mainly driven by the anisotropic pressure. Using a coordinate system with the xx-direction aligned with the reconnecting magnetic field and the yy-direction aligned with the central current layer, it is well-known that for the much studied 2D laminar anti-parallel and symmetric scenario the reconnection electric field at the XX-line must be balanced by the ∂pexy/∂x\partial p_{exy}/ \partial x and ∂peyz/∂z\partial p_{eyz}/ \partial z off-diagonal electron pressure stress components. We find that the electron anisotropy upstream of the EDR imposes large values of ∂pexy/∂x\partial p_{exy}/ \partial x within the EDR, and along the direction of the reconnection XX-line this stress cancels with the stress of a previously determined theoretical form for ∂peyz/∂z\partial p_{eyz}/ \partial z. The electron frozen-in law is instead broken by pressure tensor gradients related to the direct heating of the electrons by the reconnection electric field. The reconnection rate is free to adjust to the value imposed externally by the plasma dynamics at larger scales.Comment: Submitted to Physics of Plasmas, 11 October 202

    Influence of the Lower Hybrid Drift Instability on the onset of Magnetic Reconnection

    Full text link
    Two-dimensional and three-dimensional kinetic simulation results reveal the importance of the Lower-Hybrid Drift Instability LHDI to the onset of magnetic reconnection. Both explicit and implicit kinetic simulations show that the LHDI heats electrons anisotropically and increases the peak current density. Linear theory predicts these modifications can increase the growth rate of the tearing instability by almost two orders of magnitude and shift the fastest growing modes to significantly shorter wavelengths. These predictions are confirmed by nonlinear kinetic simulations in which the growth and coalescence of small scale magnetic islands leads to a rapid onset of large scale reconnection

    Quantum field theory on a growing lattice

    Full text link
    We construct the classical and canonically quantized theories of a massless scalar field on a background lattice in which the number of points--and hence the number of modes--may grow in time. To obtain a well-defined theory certain restrictions must be imposed on the lattice. Growth-induced particle creation is studied in a two-dimensional example. The results suggest that local mode birth of this sort injects too much energy into the vacuum to be a viable model of cosmological mode birth.Comment: 28 pages, 2 figures; v.2: added comments on defining energy, and reference
    • …
    corecore